Calcified Tissue International

, Volume 56, Issue 4, pp 259–262 | Cite as

Alterations of bone mineral density of the femurs in hemiplegia

  • S. Takamoto
  • T. Masuyama
  • M. Nakajima
  • K. Sekiya
  • H. Kosaka
  • S. Morimoto
  • T. Ogihara
  • T. Onishi
Clinical Investigations

Abstract

We evaluated the bone mineral density (BMD) of the bilateral femurs in 112 patients with hemiplegia using dual-energy X-ray absorptiometry in order to elucidate the effect of disuse and immobilization. BMD of the paretic side was significantly reduced compared with that of the nonparetic side in hemiplegic patients (femoral neck 0.582±0.014 g/cm2 versus 0.623±0.014 g/cm2 and total femur 0.645±0.02 g/cm2 versus 0.702±0.017 g/cm2; mean±SEM, P<0.01, respectively). Femoral BMD in both the paretic and nonparetic limb had significantly (P<0.01) lower values than in age- and sex-matched controls, but the paretic side had a more significant reduction of BMD; femoral neck-20% versus -14% and total femur -24% versus -18%. In addition, patients with impaired activities of daily living (ADL), evaluated by a mobility score, had significantly decreased BMD ratios of paretic/nonparetic side than patients with improved ADL (femoral neck 91% versus 97%, P<0.01 and total femur 89% versus 94%, P<0.05). Our results indicated that BMD of both femurs of patients with hemiplegia was reduced, although the paretic side showed a greater BMD decrease. This decrease might be prevented or reduced by improvement of ADL.

Key words

Osteoporosis Bone mineral density Hemiplegia Activity of daily living 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jerkins DP, Cochran TH (1969) Osteoporosis: the dramatic effect of disuse of an extremity. Clin Orthop 64:128–134Google Scholar
  2. 2.
    Kazarian LE, Von Gierke HE (1969) Bone loss as a result of immobilization and chelation. Preliminary results in Macaca mulatta. Clin Orthop 65:67–75Google Scholar
  3. 3.
    Issekutz B Jr, Blizzard JJ, Birkhead NC, Rodahl K (1966) Effect of prolonged bedrest on urinary calcium output. J Appl Physiol 21:1013–1020Google Scholar
  4. 4.
    Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE (1982) Calcium homeostasis in immobilization: an example of absorptive hypercalciuria. N Engl J Med 306:1136–1140Google Scholar
  5. 5.
    Denham MJ (1973) Progressive osteoporosis in hemiplegia. Gerontol Clin 15:361–365Google Scholar
  6. 6.
    Van Ouwenaller C, Uebelhart D, Chantraine A (1989) Bone metabolism in hemiplegic patients. Scand J Rehab Med 21:165–170Google Scholar
  7. 7.
    Panin N, Gorday WJ, Paul B (1971) Osteoporosis in hemiplegia. Stroke 2:41–47Google Scholar
  8. 8.
    Naftchi NE, Viau AT, Marshall CH, Davis WS, Lowman EW (1975) Bone mineralization in the distal forearm of hemiplegic patients. Arch Phys Med Rehabil 56:487–492Google Scholar
  9. 9.
    Peszczynski M (1957) The fractured hip in hemiplegic patients. Geriatrics 12:687–690Google Scholar
  10. 10.
    Mulley G, Espley AJ (1979) Hip fracture after hemiplegia. Postgrad Med J 55:264–265Google Scholar
  11. 11.
    Lips P, van Ginkel FC, Netelenbos JC, Wiersinga A, van der Vijgh WJF (1990) Lower mobility and markers of bone resorption in the elderly. Bone Miner 9:49–57Google Scholar
  12. 12.
    Kushida K, Inoue T, Sumi Y, Denda M, Yamazaki K, Ooya K, Okamoto S, Hujiwara T, Kinn K, Taniguti M, Ooishi T (1990) Osteoporosis: bone mineral measurement using DXA. Nihon Rinsho 48:121–126 (in Japanese)Google Scholar
  13. 13.
    Payne RB, Little AJ, Williams RB, Milner JR (1973) Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J 4:643–646Google Scholar
  14. 14.
    Prince RL, Price RI, Ho S (1988) Forearm bone loss in hemiplegia: a model for the study of immobilization osteoporosis. J Bone Miner Res 3:305–310Google Scholar
  15. 15.
    Iversen E, Hassager C, Christiansen C (1989) The effect of hemiplegia on bone mass and soft tissue body composition. Acta Neurol Scand 79:155–159Google Scholar
  16. 16.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. Berlin, HirschwaldGoogle Scholar
  17. 17.
    Krolner B, Toft B, Pors-Nielsen S, Tondevold E (1983) Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci 64:541–546Google Scholar
  18. 18.
    Aloia JF, Cohn SH, Ostuni JA, Cane R, Ellis K (1978) Prevention of involutional bone loss by exercise. Ann Intern Med 89: 356–358Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • S. Takamoto
    • 1
  • T. Masuyama
    • 1
  • M. Nakajima
    • 1
  • K. Sekiya
    • 1
  • H. Kosaka
    • 1
  • S. Morimoto
    • 2
  • T. Ogihara
    • 2
  • T. Onishi
    • 1
  1. 1.Department of Internal MedicineHanwa-Senboku HospitalSakai-shi, OsakaJapan
  2. 2.Department of Geriatric MedicineOsaka University Medical SchoolOsakaJapan

Personalised recommendations