Current Genetics

, Volume 22, Issue 4, pp 297–304 | Cite as

Structure and evolution of myxomycete nuclear group I introns: a model for horizontal transfer by intron homing

  • Steinar Johansen
  • Terje Johansen
  • Finn Haugli
Original Articles


We have examined five nuclear group I introns, located at three different positions in the large subunit ribosomal RNA (LSU rRNA) gene of the two myxomycete species, Didymium iridis and Physarum polycephalum. Structural models of intron RNAs, including secondary and tertiary interactions, are proposed. This analysis revealed that the Physarum intron 2 contains an unusual core region that lacks the P8 segment, as well as several of the base-triples known to be conserved among group I introns. Structural and evolutionary comparisons suggest that the corresponding introns 1 and 2 were present in a common ancestor of Didymium and Physarum, and that the five introns in LSU rRNA genes of these myxomycetes were acquired in three different events. Evolutionary relationships, inferred from the sequence analysis of several different nuclear group I introns and the ribosomal RNA genes of the intron-harbouring organisms, strongly support horizontal transfer of introns in the course of evolution. We propose a model that may explain how myxomycetes in natural environments obtained their nuclear group I introns.

Key words

Ribosomal DNA Group I introns Myxomycete 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belfort M (1991) Cell 64:9–11Google Scholar
  2. Burke JM (1988) Gene 73:273–294Google Scholar
  3. Burke JM, Esherick JS, Burfeind WR, King JL (1990) Nature 344:80–82Google Scholar
  4. Cech TR (1988) Gene 73:259–271Google Scholar
  5. Cech TR (1990) Annu Rev Biochem 59:543–568Google Scholar
  6. Collins RA (1988) Nucleic Acids Res 16:2705–2715Google Scholar
  7. Couture S, Ellington AD, Gerber AS, Cherry JM, Doudna JA, Green R, Hanna M, Pace U, Rajagopal J, Szostak JW (1990) J Mol Biol 215:345–358Google Scholar
  8. Dávila-Aponte JA, Huss VAR, Sogin ML, Cech TR (1991) Nucleic Acids Res 19:4429–4436Google Scholar
  9. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Nature 350:148–151Google Scholar
  10. Dujon B (1989) Gene 82:91–114Google Scholar
  11. Edman JC, Kovacs JA, Masur H, Snati DV, Elwood HJ, Sogin ML (1988) Nature 334:519–522Google Scholar
  12. Engberg J, Nielsen H, Lenaers G, Murayama O, Fujitani H, Higashinakagawa T (1990) J Mol Evol 30:514–521Google Scholar
  13. Fitch WM, Margoliash E (1967) Science 155:279–284Google Scholar
  14. Guo Q, Akins RA, Garriga G, Lambowitz AM (1991) J Biol Chem 266:1809–1819Google Scholar
  15. Heinemann JA, Sprague GFJ (1989) Nature 340:205–209Google Scholar
  16. Hicke BJ, Christian EL, Yarus M (1989) EMBO J 8:3843–3851Google Scholar
  17. Huss VAR, Sogin ML (1990) J Mol Evol 31:432–442Google Scholar
  18. Johansen S (1991) DNA Sequence-J DNA Seq Map 2:193–196Google Scholar
  19. Johansen S, Johansen T, Haugli F (1992) Curr Genet 22:305–312Google Scholar
  20. Lambowitz AM (1989) Cell 56:323–326Google Scholar
  21. Lambowitz AM, Perlman PS (1990) Trends Biochem 15:440–444Google Scholar
  22. Lenaers G, Maroteaux L, Michot B, Herzog M (1989) J Mol Evol 29:40–51Google Scholar
  23. Michel F, Dujon B (1983) EMBO J 2:33–38Google Scholar
  24. Michel F, Westhof E (1990) J Mol Biol 216:585–610Google Scholar
  25. Michel F, Ellington AD, Couture S, Szostak JW (1990) Nature 347:578–580Google Scholar
  26. Mohr G, Lambowitz AM (1991) Nature 354:164–167Google Scholar
  27. Muscarella DE, Vogt VM (1989) Cell 56:443–454Google Scholar
  28. Muscarella DE, Ellison EL, Ruoff BM, Vogt VM (1990) Mol Cell Biol 10:3386–3396Google Scholar
  29. Nielsen H, Engberg J (1985) Nucleic Acids Res 13:7445–7455Google Scholar
  30. Nishikawa M, Suzuki K, Yoshida K (1992) Curr Genet 21:101–108Google Scholar
  31. Noller HE, Kop J, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Woese CR (1981) Nucleic Acids Res 9:6167–6189Google Scholar
  32. Nomiyama H, Kuhara S, Sukita T, Otsuka T, Sakaki Y (1983a) Nucleic Acids Res 9:5507–5520Google Scholar
  33. Nomiyama H, Sakaki Y, Takagi Y (1981b) Proc Natl Acad Sci USA 78:1376–1380Google Scholar
  34. Ragnini A, Grisanti P, Rinaldi T, Frontali L, Palleschi C (1991) Curr Genet 19:169–174Google Scholar
  35. Skelly PJ, Maleszka R (1991) Curr Genet 19:89–94Google Scholar
  36. Sogin ML, Edman JC (1989) Nucleic Acids Res 17:5349–5359Google Scholar
  37. Vogt VM, Braun R (1976) J Mol Biol 106:567–587Google Scholar
  38. Wilson C, Fukuhara H (1991) Curr Genet 19:163–167Google Scholar
  39. Woodson SA, Cech TR (1989) Cell 57:335–345Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Steinar Johansen
    • 1
  • Terje Johansen
    • 1
  • Finn Haugli
    • 1
  1. 1.Institute of Medical BiologyUniversity of TromsøTromsøNorway

Personalised recommendations