Advertisement

International Orthopaedics

, Volume 12, Issue 4, pp 323–330 | Cite as

Investigation of ischaemic necrosis of the femoral head with trace elements

  • K. A. Milachowski
Article

Summary

This preliminary report examines the possible disturbances in mineral and trace element metabolism in idiopathic ischaemic necrosis of the femoral head. Bony specimens from 45 femoral heads removed from patients with this condition were compared with 62 osteoarthritic and 10 normal femoral heads. Blood analysis was also carried out in the first two groups of patients, who were having joint replacement operations. The normal specimens were obtained at postmortem. Calcium, Magnesium, Iron, Copper, Manganese and Zinc were analysed in blood and bone by atom absorption spectrophotometry, and Cadmium, Chromium, Nickel and Lead by ICP emission spectroscopy. In ischaemic necrosis Magnesium and Copper are especially decreased, but the toxic trace elements Cadmium, Nickel, Lead and Chromium are found in a significantly higher concentration in the femoral head. It is submitted that these findings indicate the need for further investigation.

Key words

Idiopathic ischaemic necrosis Femoral head Trace elements Minerals 

Résumé

Ce rapport préliminaire envisage les troubles éventuels du métabolisme des métaux et des oligo-éléments dans la nécrose idiopathique de la tête fémorale. Des prélévements osseux pratiqués sur 45 têtes fémorales réséquées chez des patients atteints de cette affection ont été comparés avec 62 têtes arthrosiques et 10 normales, prélevées sur des cadavres. Des analyses sanguines ont également été effectuées dans les deux premiers groupes de malades, qui ont subi une arthroplastie. On a dosé le calcium, le magnésium, le fer, le cuivre, le manganèse et le zinc par spectrophotométrie, dans le sang et dans l'os, et le cadmium, le chrome, le nickel et le plomb par spectroscopie. Dans la nécrose ischémique les taux de magnésium et de cuivre sont nettement abaissés tandis qu'on note, dans la tête fémorale, une augmentation significative de la concentration des oligo-éléments toxiques, cadmium, nickel, plomb et chrome. Ces constatations semblent justifier des études complémentaires.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel J, Ohnesorge FK (1979) Toxikologie der Spurenelement. In: Gladtke E, Heimann G, Eckert I (eds) Spurenelemente. Thieme, Stuttgart, pp 185–193Google Scholar
  2. 2.
    Aitken JM (1976) Factors affecting the distribution of zinc in the human skeleton. Calif Tissue Res 20: 23–30Google Scholar
  3. 3.
    Anders G, Münzenberg KJ, Gebhardt M (1980) Die Beeinflussung kalzergischer Reaktionen durch Magnesium. Magn Bull 2: 108–112Google Scholar
  4. 4.
    Asling CW, Hurley LS (1963) The influence of trace elements on the skeleton. Clin Orthop 27: 213–262Google Scholar
  5. 5.
    Battistone GC, Posey WR, Barone JJ, Cutright DE (1972) Zinc and bone healing: The effect of zinc-cysteamin-N-acetic on the healing of extraction wounds in rats. Oral Surg 34: 704–711Google Scholar
  6. 6.
    Battistone GC, Miller RA, Grower MF, Cutright DE (1974) The effect of ZnCAA on bone healing in rhesus monkeys. J Dent Res. 528–533Google Scholar
  7. 7.
    Blumenthal I, Lealman GT, Franklyn PP (1980) Fracture of the femur, fish oddur and copper deficiency in a preterm infant. Arch Dis Child 55: 229–231Google Scholar
  8. 8.
    Boumans PW (1981) Line coincidence table for inductively coupled plasma spektroskopy. Plenum, New YorkGoogle Scholar
  9. 9.
    Brätter P, Schramel P (1983) Trace element analytical chemistry in medicine and biology. de Gruyter, Berlin New YorkGoogle Scholar
  10. 10.
    Brandt G, Lutz D, Prestle H (1974) Spurenelementgehalt in Leber, Knochen und Ovar. Z Geront 8: 28–37Google Scholar
  11. 11.
    Calhoun NR, Smith JC, Becker KL (1974) The role of zinc in bone metabolism. Clin Orthop. 103: 212–234Google Scholar
  12. 12.
    Clayton BE (1980) Clinical chemistry of trace elements. Adv Clin Chem 21: 147–176Google Scholar
  13. 13.
    Dallmann PR (1974) Tissue effects of iron deficiency. In: Jacobs A, Worwood M (eds) Iron in biochemistry and medicine. Academ Press, London, pp 437–475Google Scholar
  14. 14.
    Davis JM, Svendsgaard DJ (1987) Lead and child development. Nature 329: 297–300Google Scholar
  15. 15.
    Daunderer M (1983) Klinische Toxikologie. Ecomed, LandsbergGoogle Scholar
  16. 16.
    Dielert E, Milachowski KA, Schramel P (1983) Die Bedeutung der legierungsspezifischen Elemente Eisen, Kobalt, Chrom und Nickel für die aspetische Lockerung von Hüftgelenkstotalendoprothesen. Z Orthop 121: 58–62Google Scholar
  17. 17.
    Dixon WJ (1981) BMDP statistical software. University of California Press, Los AngelesGoogle Scholar
  18. 18.
    Einbrodt HJ, Rosmanith J, Prajsnar D (1976) Der Cadmiumgehalt im Blut und Rauchgewohnheiten. Naturwissenschaften 63: 148–152Google Scholar
  19. 19.
    Eschberger J, Maruna RFL, Trojan E (1978) Morphologische und biochemische Untersuchungen an Oberschenkelköpfen nach Schenkelhalsfrakturen. Acta Med Austriaca 11: 5Google Scholar
  20. 20.
    Ferguson A, Laing P, Hodge E (1960) The ionisation of metal implants in living tissues. J Bone Joint Surg [Br] 42: 77Google Scholar
  21. 21.
    Glimcher MJ, Kenzora JE (1979) The biology of osteonecrosis of the human femoral head and its clinical implications. II. The pathological changes in the femoral head as an organ and in the hip joint. Clin Orthop 139: 283–312Google Scholar
  22. 22.
    Iyengar GV, Kollmer WE, Bowen HJM (1978) The elemental composition of human tissues and body fluids. Chemie, WeinheimGoogle Scholar
  23. 23.
    Keck E, Schärtl A, Krüskemper HL (1984) Einfluß von Parathormon, Calcitonin und Prostaglandin E2 auf den in vitro Magnesiumstoffwechsel menschlicher Spongiosa. Mag Bull 6: 105–111Google Scholar
  24. 24.
    Kirchgessner M, Schwarz FJ, Grassmann E, Roth HP, Schnegg A (1979) Experimentelle Studien zur Diagnose von Spurenelementmangel. In: Gladtke E, Heimann G, Eckert I (eds) Spurenelemente. Thieme, Stuttgart, 68–91Google Scholar
  25. 25.
    Lappalainen R, Knuutilla M, Lammi S, Alhava EM, Olkkonen H (1982) ZN and Cu-content in human cancellous bone. Acta Orthop Scand 53: 51–56Google Scholar
  26. 26.
    Reference deletedGoogle Scholar
  27. 27.
    Michel R, Hofmann J, Zilkens J (1979) Influence of metal implants on the trace element contents in human and mamalian tissue and organs. In: IAEA, Nuclear activation techniques in the life sciences. Internation atomic energy agency, Wien, pp 351–362Google Scholar
  28. 28.
    Milachowski KA (1986) Spurenelementstoffwechseluntersuchungen des Haltungs-und Bewegungsapparates. Thieme, Stuttgart New YorkGoogle Scholar
  29. 29.
    Milachowski KA, Matzen KA (1982) Mineral- und Spurenelementstoffwechselstörungen bei der Koxarthrose. Z Orthop 120: 828–832Google Scholar
  30. 30.
    Milachowski KA, Moschinski D (1981) Magnesium and bone healing. Mag Bull 3: 16Google Scholar
  31. 31.
    Milachowski KA, Moschinski D, Jaeschock R, Kaschner A (1980) The influence of zinc on bone healing in rats. Arch Orthop Trauma Surg 96: 17–21Google Scholar
  32. 32.
    Münzenberg KJ, Kühr J (1981) Die Bedeutung des Magnesiums in der Orthopädie. Mag Bull 3: 73–77Google Scholar
  33. 33.
    Pesch HJ, Brandt G, Lutz D (1973) Beitrag zur Mineralpathologie des Knochens. Verh Dtsch Ges Pathol 57: 467–471Google Scholar
  34. 34.
    Prasad AS (1976) Trace elements in human health and disease. Academic Press, New YorkGoogle Scholar
  35. 35.
    Quint P, Althoff J, Reiling HE, Höhling HJ (1982) Inverstvoltammetrische Bestimmungen von Cd, Cu, Pb und Zn für verschiedene Stadien der Knorpelmineralisation. Fresenius Z Anal Chem 311: 415–418Google Scholar
  36. 36.
    Quint P, Reddi AH, Althoff J, Höhling HJ (1981) Enrichment of CO2 and trace elements on matrix induced enchondrale bone formation. Calcif Tissue Int 33: 123–127Google Scholar
  37. 37.
    Reichlmayr-Lais AM, Kirchgessner M (1981) Zur Extentialität von Blei für das tierische Wachstum. Z. Tierphysiol Tierernaer Futtermittelkd 46: 1–12Google Scholar
  38. 38.
    Schramel P, Ovcar-Pavlu J (1979) Abhängigkeit des Meßsignals von der Säurekonzentration der Probe bei der ICP-Emissionsspektralanalyse. Fresenius Z Anal Chem 298: 28–34Google Scholar
  39. 39.
    Schramel P, Wolf A, Seif R, Klose BJ (1980) Eine neue Apparatur zur Druckverachsung von biologischem Material. Fresenius Z Anal Chem 302: 62–69Google Scholar
  40. 40.
    Schramel P (1982) Die Leistungsfähigkeit der ICP-Emissionsspektroskopie zur Bestimmung von Spurenelementen in biologischen, medizinischen und Umweltproben. Fresenius Z Anal Chem 310: 209–214Google Scholar
  41. 41.
    Schwarz K, Mertz W (1959) Chromium (1, 2, 3) and the glucose tolerance-factor. Arch Biochem Biophys 85: 292–297Google Scholar
  42. 42.
    Seelig MS (1980) Magnesium deficiency in the pathogenesis of disease. Plenum, New YorkGoogle Scholar
  43. 43.
    Underwood EJ (1977) Trace elements in human and animal nutritution, 4th edn. Acad Press, New YorkGoogle Scholar
  44. 44.
    Zinn WM (1971) Idiopathic ischaemic necrosis of the femoral head in adults. Thieme, StuttgartGoogle Scholar
  45. 45.
    Zumkley H (1983) Spurenelemente — Grundlagen, Ätiologie, Diagnose, Therapie. Thieme, Stuttgart New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. A. Milachowski
    • 1
  1. 1.Klinikum GrosshadernOrthopädische KlinikMünchen 70Federal Republic of Germany

Personalised recommendations