, Volume 92, Issue 3, pp 305–312 | Cite as

Sex, size, competition and escape—strategies of reproduction and dispersal in Lasallia pustulata (Umbilicariaceae, Ascomycetes)

  • Geir Hestmark
Original Papers


The lichen Lasallia pustulata has a mixed strategy of asexual and sexual reproduction. Close-dispersed, asexual, symbiotic isidia are produced early, when the thalli are small. The asexual propagules are subsequently supplemented by far-dispersed, sexually generated ascospores when the thalli grow larger. This observation is consistent with evolutionary stable strategy (ESS) models of dispersal allocations in heterocarpic plants accordin to which the production of far-dispersed propagules should increase as clutch size and sibcompetition in the local habitat increases. The observation is also consistent with the “tangled bank” or “elbow room” hypothesis for the maintenance of sexuality, according to which sex, by generating genetic variation, represents an escape from competition in biologically saturated environments. Thus the advantage of sex is density dependent. L. pustulata grows in densely packed populations where intraspecific competition results in self-thining and the development of distinct sizehierarchies.

Key words

Ecology of sex Tangled bank Heterocarpy Dispersal Lasallia pustulata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonovics J, Ellstrand NC (1984) Experimental studies of the evolutionary significance of sex. I. A test of the frequency-dependent selection hypothesis. Evolution 38:103–115Google Scholar
  2. Baker GA, O'Dowd DJ (1982) Effects of parent plant density on the production of achene type in the annual Hypochoeris glabra. J Ecol 70:201–215Google Scholar
  3. Bell G (1982) The masterpiece of nature. The evolution of genetics and sexuality. Croom Helm, London CanberraGoogle Scholar
  4. Bernstein H (1983) Recombinational repair may be an important function of sexual reproduction. BioScience 33:326–331Google Scholar
  5. Bernstein H, Byerly HC, Hopf FA, Michod RE (1985) Genetic damage, mutation and the evolution of sex. Science 229:1277–1281Google Scholar
  6. Bremermann HJ (1980) Sex and polymorphism as strategies in host-pathogen interactions. J Theor Biol 87:671–702Google Scholar
  7. Boyden A (1954) The significance of asexual reproduction. Syst Zool 3:26–37Google Scholar
  8. Burrows FM (1975) Calculation of the primary trajectories of dust seeds, spores and pollen in unsteady winds. New Phytol 75:389–403Google Scholar
  9. Caswell H (1985) The evolutionary demography of clonal reproduction. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 187–224Google Scholar
  10. Cheplick GP, Quinn JA (1982) Amphicarpum purshii and the “pessimistic” strategy in amphicarpic annuals with subterranean fruit. Oecologia 52:327–332Google Scholar
  11. Cheplick GP, Quinn JA (1983) The shift in aeria/subterranean fruit ratio in Amphicarpum purshii: causes and significance. Oecologia 57:374–379Google Scholar
  12. Comins HN, Hamilton WD, May RM (1980) Evolutionary stable dispersal strategies. J Theor Biol 82:205–230Google Scholar
  13. Degelius G (1940) Studien über die Konkurrenzverhältnisse der Laubflechten auf nacktem Fels. Medd Göteborgs Bot Trädgård 14:195–219Google Scholar
  14. Dougherty EC (1955) Comparative evolution and the origin of sexuality. Syst Zool 4:145–169Google Scholar
  15. Frank SA (1986) Dispersal polymorphisms in subdivided populations. J Theor Biol 122:303–309Google Scholar
  16. Gerritsen J (1980) Sex and parthenogenesis in sparse populations. Am Nat 115:718–742Google Scholar
  17. Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, BerkeleyGoogle Scholar
  18. Glesener RR, Tilman D (1978) Sexuality and the components of environmental uncertainty: Clues from geographic parthenogenesis in terrestrial animals. Am Nat 112:659–673Google Scholar
  19. Goetz A (1965) Parameters for biocolloidal matter in the atmosphere. In: Tsuchiya HM, Brown AH (eds). Proceedings of the atmospheric biology conference, April 1964. University of Minnesota, Minnesota pp 79–97Google Scholar
  20. Gregory PH (1945) The dispersion of airborne spores. Trans Br Mycol Soc 28:26–72Google Scholar
  21. Gregory PH (1973) Microbiology of the atmosphere, 2nd edn. Leonard Hill, AylesburyGoogle Scholar
  22. Hakulinen R (1962) Die Flechtengattung Umbilicaria in Ostfenno-skandien und Angrenzenden Teilen Norwegens. Ann Bot Soc Zool Bot Fenn ‘Vanamo’ 32 (6):1–87Google Scholar
  23. Halvorson HO, Monroy A (eds) (1985) The origins and evolution of sex. Liss, New YorkGoogle Scholar
  24. Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290Google Scholar
  25. Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581Google Scholar
  26. Hara T (1984) A stochastic model and the moment dynamics of the growth and size distribution in plant populations. J Theor Biol 109:173–190Google Scholar
  27. Hawker L (1966) Environmental influences on reproduction. In: Ainsworth GC, Sussman AS (eds) The Fungi, Vol. 2 Academic Press, New York, pp 435–469Google Scholar
  28. Hestmark G (1991) To sex, or not to sex...Structures and strategies of reproduction in the family Umbilicariacea (Lecanorales, Ascomycetes). Sommerfeltia Suppl 3:1–47Google Scholar
  29. Hilitzer A (1925) Les lichens des rochers silicieux dans la partie centrale de la plaine de Labe. Preslia 3:10–22Google Scholar
  30. Ingold CT (1971) Fungal spores. Their liberation and dispersal. Clarendon Press, OxfordGoogle Scholar
  31. Kelley SE, Antonovics J, Schmitt J (1988) A test for the short-term advantage of sexual reproduction. Nature 331:714–716Google Scholar
  32. Koella JC (1988) The tangled bank: The maintenance of sexual reproduction through competitive interactions. J Evol Biol 1:95–116Google Scholar
  33. Koller D Roth (1964) Studies on the ecological and physiological significance of amphicarpy in Gymnarrhena micrantha (Compositae). Am J Bot 51:26–35Google Scholar
  34. Levin DA (1975) Peast pressure and recombination in plants. Am Nat 109:437–451Google Scholar
  35. Lewis WM Jr (1987) The cost of sex. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel Boston, pp 33–57Google Scholar
  36. Llano GA (1950) A monograph of the lichen family Umbilicariaceae in the western hemisphere. Navexos P-831, Office Naval Res Dep Navy, Washington DCGoogle Scholar
  37. Lloyd DG (1980) Benefits and handicaps of sexual reproduction. Evol Biol 13:69–111Google Scholar
  38. Margulis L, Sagan D (1990) Origins of sex. Three billion years of genetic recombination, 2nd edn. Yale University Press, New HavenGoogle Scholar
  39. Massé L (1964) Recherches phytosociologique et écologiques sur les lichens des schistes rouges cambrients des environs de Rennes (I et V). Veg Acta Geobiol 12:103–222Google Scholar
  40. Massé L (1966) Étude comparée des teneurs en azote total des lichens et de leur substrat: les espèces ‘ornitocoprophiles’. C R. Acad Sci Paris Ser D 262:1721–1724Google Scholar
  41. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  42. Micheli PA (1729) Nova Plantarvm Genera Ivxta Tovrnefortii Methodvm Disposita. Typis Bernardi Paperinii, FlorentiæGoogle Scholar
  43. Michod RE, Levin BR (eds) (1988) The evolution of sex. Sinauer, SunderlandGoogle Scholar
  44. Mohler CL, Marks PL, Sprugel DG (1978) Stand structure and allometry of trees during self-thinning in pure stands. J Ecol 66:599–614Google Scholar
  45. Mosbach K (1964) On the biosynthesis of lichen substances. I. The depside gyrophoric acid. Acta Chem Scand 18:329–334Google Scholar
  46. Mosbach K, Ehrensvärd U (1966) Studies on lichen enzymes. I. Preparation and properties of a depside hydrolysing esterase and of orsellinic acid decarboxylase. Biochem Biophys Res Comm 22:145–150Google Scholar
  47. Muenchow G (1978) A note on the timing of sex in asexual/sexual organisms. Am Nat 112:774–779Google Scholar
  48. Müller E (1979) Factors inducing asexual and sexual sporulation in fungi (mainly ascomycetes). In: Kendrick B (ed) The whole fungus. National Museum of Natural Sciences, National Museums of Canada and the Kananaskis Foundation, Ottawa, pp 265–282Google Scholar
  49. Posner B, Feige GB, Huneck S (1990) Phytochemische Untersuchungen an westeuropäischen Lasallia-Arten. Z Naturforsch 45c:161–165Google Scholar
  50. Raper JR (1966) Life cyle, basic patterns of sexuality, and sexual mechanisms. In: Ainsworth GC, Sussman AS (eds) The Fungi. Vol. 2. Academic Press, New York, pp 473–511Google Scholar
  51. Sancho LG, Kappen L (1989) Photosynthesis and water relations and the role of anatomy in Umbilicariaceae (lichens) from Central Spain. Oecologia 81:473–480Google Scholar
  52. Schoen DJ, Lloyd DG (1984) The selection of cleistogamy and heteromorphic diaspores. Biol J Linn Soc 23:303–322Google Scholar
  53. Schultz J, Mosbach K (1971) Studies on lichen enzymes. Purification and properties of an orselliate depside hydrolase obtained from Lasallia pustulata. Eur J Biochem 22:153–157Google Scholar
  54. Shields WM (1982) Philopatry, inbreeding and the evolution of sex. State University of New York Press, AlbanyGoogle Scholar
  55. Silvertown JW (1985) When plants play the field. In: Greenwood PJ, Harvey PH, Slatkin M (eds) Evolution: Essays in honour of John Maynard Smith. Cambridge University Press, Cambridge, pp 143–153Google Scholar
  56. Stearns SC (ed) (1987) The evolution of sex and its consequences. Birkhauser, Basel BostonGoogle Scholar
  57. Taylor PD (1988) An inclusive fitness model for dispersal of offspring. J Theor Biol 130:363–378Google Scholar
  58. Tulasne LR (1852) Membire pour servir a l'histoire organographique et physiologique des lichens. Ann Sci Nat Bot Biol Veg Sér 3, 17:5–128, 153–249Google Scholar
  59. Verseghy K (1965) Die Verbreitung von Umbilicaria pustulata Hoffm. und ihre gesellschaftlichen Verhältnisse in Ungarn. Ann Hist Nat Mus Nat Hung 57:159–164Google Scholar
  60. Warner RR (1978) Sexual-asexual evolutionary equilibrum? Am Nat 112:960–962Google Scholar
  61. Weiner J (1985) Size hierarchies in experimental populations of annual plants. Ecology 6:743–752Google Scholar
  62. Westoby M (1982) Frequency distributions of plant size during competitive growth of stands: the operation of distribution-modifying functions. Ann Bot 50:733–735Google Scholar
  63. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar
  64. Williams GC, Mitton JB (1973) Why reproduce sexually? J Theor Biol 39:545–554Google Scholar
  65. Wirth V (1972) Die Silikatflechten-Gemeinschaften im ausseralpinen Zentraleuropa (Dissertationes Botanicæ 17) J Cramer, LehreGoogle Scholar
  66. Young JPW (1981) Sib competition can favour sex in two ways. J Theor Biol 88:755–756Google Scholar
  67. Zeide B (1978) Reproductive behavior of plants in time. Am Nat 112:636–639Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Geir Hestmark
    • 1
  1. 1.Division of Botany, Department of BiologyUniversity of OsloOslo 3Norway

Personalised recommendations