, Volume 99, Issue 1–2, pp 124–131 | Cite as

Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores

  • D. Schlichter
  • U. Meier
  • H. W. Fricke
Original Paper


Autofluorescent chromatophores were detected in 17 out of 71 zooxanthellate coral species studied. Chromatophores are localized either in the oral gastrodermic (endoderm) or oral epidermis (ectoderm). The pigment granules within the chromatophores (0.5–1.0 μm in diameter) show a brilliant light-blue/turquoise autofluorescence (emission between 430 and 500 nm) after excitation with light of 365–410 nm. All species where the autofluorescent gastrodermal chromatophores form a compact layer, embedding the zooxanthellae, belong to the family Agariciidae. In contrast, some species of the Faviidae (2), Pectiniidae (1) and Mussidae (1) were found to have distinct, autofluorescent chromatophores in the oral epidermis. Autofluorescent pigments of the host may enhance photosynthesis of the symbionts as in Leptoseris fragilis. Short wavelength irradiance, less suitable for photosynthesis, is transformed by host pigments into longer wavelengths which are photosynthetically more effective. Thus, host species possessing autofluorescent chromatophores might have selective advantage over non-fluorescent species, and have the potential to survive in light-limited habitats. Furthermore, the daily period of photosynthesis is extended, thus increasing the energy supply and enhancing the deposition of skeletal carbonate. The absence or presence of chromatophores may have value in taxonomy and could putatively be of plalaeontological and palaeoecological interest.

Key words

Autofluorescent chromatophores Light transformation Phototrophy Reef Zooxanthellate corals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cloney RA, Florey E (1968) Ultrastructure of cephalopod chromatophore organs. Z Zellforsch 89: 250–280Google Scholar
  2. Drollet JH, Glaziou P, Martin PMV (1993) Study of the mucus from the solitary coral Fungia fungites (L. 175) (Scleractinia, Fungiidae) in relation with the photobiological UV adaptation. in Proceedings of the 7th International Coral Reef Symposium, Guam, USA (in press)Google Scholar
  3. Dunlap WC, Chalker BE (1986) Identification and quantification of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reef 5: 155–159Google Scholar
  4. Fricke HW, Schuhmacher H (1983) The depth limits of the Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible) Mar Ecol Prog Ser 4: 163–194Google Scholar
  5. Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible) Oecologia 73: 371–381Google Scholar
  6. Goodwin TW (1968) Pigments of coelenterata. In: Florkin M, Scheer BT (ed) Chemical zoology. Academic Press, New York, pp 149–155Google Scholar
  7. Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull Mar Biol Lab Woods Hole 134: 411–424Google Scholar
  8. Jerlov NG (1970) Light. In: Kinne O (ed) Marine ecology. Wiley, pp 95–103Google Scholar
  9. Kaiser P, Schlichter D, Fricke HW (1993) Influence of light on algal symbionts of the deep water coral Leptoseris fragilis Mar Biol 117: 45–52Google Scholar
  10. Kawaguti S (1944) On the physiology of reef corals. VI. Study on the pigments. Contr Palao Trop Biol Stn 2: 616–673Google Scholar
  11. Kawaguti S (1969) Effect of the green fluorescent pigment on the productivity of the reef corals. Micronesica 5:313Google Scholar
  12. Levanon-Spanier I, Padan E, Reiss Z (1979) Primary production in a desert-enclosed-sea-the Gulf of Elat (Aqaba), Red Sea. Deep-Sea Res 26: 673–685Google Scholar
  13. Logan A, Halcrow K, Tomascik K (1990) UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermunda. Bull Mar Sci 46: 807–813Google Scholar
  14. Patterson MP (1992) A chemical engineering view of cnidarian symbiosis. Am Zool 32: 566–582Google Scholar
  15. Pilkington JB (1969) The organization of skeletal tissues in the spines of Echinus esculentus. J Mar Biol Assoc UK 49: 857–877Google Scholar
  16. Scelfo G (1985) The effect of visible and ultraviolet solar radiation on a UV-absorbing compound and chlorophyll a in a hawaiian zoanthid. Proc Int Coral Reef Congr 6: 107–112Google Scholar
  17. Scheer G, Pillai CSG (1983) Report on the Stony Corals from the Red Sea. Zoologica Stuttg 45: 1–198Google Scholar
  18. Schlichter D (1990) Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77: 447–450Google Scholar
  19. Schlichter D, Fricke HW (1991) Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Hydrobiologia 216/217: 389–394Google Scholar
  20. Schlichter D, Weber W, Fricke HW (1985) A chromatophore system in the hermatypic, deep water coral Leptoseris fragilis (Anthozoa: Hexacorallia). Mar Biol 89: 143–147Google Scholar
  21. Schlichter D, Fricke HW, Weber W (1986) Light harvesting by wavelength transformation in a smybiotic coral of the Red Sea twilight zone. Mar. Biol 91: 403–407Google Scholar
  22. Schlichter D, Fricke HW, Weber W (1988) Evidence for PAR enhancement by reflection, scattering and fluorescence in the symbiotic deep water coral Leptoseris fragilis (PAR = photosynthetically active radiation). Endocyt Cell Res 5: 83–94Google Scholar
  23. Scott BD, Jitts HR (1977) PHotosynthesis of phytoplankton and zooxanthellae on a coral reef. Mar Biol 41: 307–315Google Scholar
  24. Sheppard CRC, Sheppard ALS (1991) Corals and coral communities of Arabia. Fauna Saudi Arabia 12: 1–170Google Scholar
  25. Shibata K (1969) Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant Cell Physiol 10: 325–335Google Scholar
  26. Smith RC, Tyler JE (1976) Transmission of solar radiation into natural waters. Photochem Photobiol Rev 1: 117–155Google Scholar
  27. Spurr RA (1969) A low-viscosity epoxy embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43Google Scholar
  28. Veron JEN, Pichon M, Wijsman-Best M (1977) Scleractinia of Eastern Australia. II. Families Faviidae, Trachyphyllidae. Aust Inst Mar Sci Monogr Ser 3: 233 ppGoogle Scholar
  29. Wellington GM, Gleason DF (1993) Monitoring of ultraviolet light fluxes along a depth gradient in San Salvador Island, Bahamas. Proceedings of the 7th International Coral Reef Symposium, Guam, USA (in press)Google Scholar
  30. Wethey DS, Porter JW (1976) Habitat-related patterns of productivity of the foliaceous reef coral, Pavona praetorta DANA. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum, New York, pp 59–66Google Scholar

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • D. Schlichter
    • 1
  • U. Meier
    • 1
  • H. W. Fricke
    • 2
  1. 1.Zoologisches InstitutUniversität zu KölnKöln 41Germany
  2. 2.Max-Planck Institut für VerhaltensphysiologieSeewiesenGermany

Personalised recommendations