Anatomy and Embryology

, Volume 150, Issue 2, pp 171–186 | Cite as

Experimental analysis of the origin of the wing musculature in avian embryos

  • B. Christ
  • H. J. Jacob
  • M. Jacob


Interspecific grafts of somites, as well as parts of the somatic plate mesoderm, have been made between quail and chick embryos (stages 12–14 H.H.) at the level of the prospective wing bud in order to examine the relationship between somites and wing bud myogenesis. The stability of the natural quail nuclear labelling makes it possible to follow the developmental fate of grafted mesodermal cells in the host embryo. Embryos examined after subsequent incubation periods of 3–7 days show the following distribution of somatic and somitic cells within the wing bud: as soon as the three zones of different cell density within the mesoderm can be distinguished, cells of somitic origin are limited to the prospective myogenic are which is made up of a mixed population of somatic and somitic cells, whereas the prospective chondrogenic area as well as the subectodermal zone only consists of cells originated from the somatic plate mesoderm. After further incubation, single muscle blastema are present which were also seen to be a mixture of somatic and somitic cells. The cells of muscular bundles are of somitic origin, while the muscle connective tissue cells are derived from the somatic plate mesoderm. After grafting into the coelomic cavity or on the chorio-allantoic membrane, fragments of the somatic plate mesoderm previously isolated from quail embryos (stage 14 H.H.) at the level of the prospective wing bud exhibit well developed skeletal elements, but fail to differentiate any musculature. These experimental investigations support previous evidence for a somitic origin of wing bud myogenic cells. Histological and scanning electron microscopic studies of the brachial somites and the adjacent somatic plate mesoderm of chick embryo (stages 13–15 H.H.) reveal that migration of still undifferentiated somitic cells into the brachial somatic plate mesoderm begins to take place in embryos at stage 14.

Key words

Avian embryo Wing bud myogenesis Somitic cells Quail Chick marker system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T.F.: Techniques for preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans. N. Y. Acad. Sci., Ser. II 13, 130–133 (1951)Google Scholar
  2. Caplan, A.I., Koutroupas, St.: The control of muscle and cartilage development in the chick limb: the role of differential vascularization. J. Embryol. exp. Morph. 3, 571–583 (1973)Google Scholar
  3. Christ, B., Jacob, H.J., Jacob, M.: Über den Ursprung der Flügelmuskulatur. Experimentelle Untersuchungen mit Wachtel- und Hühnerembryonen. Experientia (Basel), 30, 1446–1448 (1974)Google Scholar
  4. Cohen, A.L., Marlow, D.P., Garner, G.: A rapid critical point method using fluorocarbons (Freons) as intermediate and transitional fluids. J. Microscopie 7, 331–342 (1968)Google Scholar
  5. Dalton, A.J.: A chrome-osmium fixative for electron microscopy. Anat. Rec. 121, 281 (1955)Google Scholar
  6. Dossel, W.E.: Preparation of tungsten micro-needles for use in embryonic research. Lab. Invest. 7, 171–173 (1958)Google Scholar
  7. Feulgen, R., Rossenbeck, H.: Mikroskopisch-chenischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler's Z. Physiol. Chem. 135, 203–252 (1924)Google Scholar
  8. Finch, R.A., Zwilling, E.: Culture stability of morphogenetic properties of chick limb-bud mesoderm. J. exp. Zool. 176, 397–408 (1971)Google Scholar
  9. Fischel, A.: Zur Entwicklung der vertebralen Rumpf- und der Extremitätenmuskulatur der Vögel und Säugetiere. Morph. Jb. 23, 544–561 (1895)Google Scholar
  10. Glücksmann, A.: Über die Entwicklung der Amniotenextremitäten und ihre Homologie mit den Flossen. Z. Anat. Entwickl.-Gesch. 102, 498–520 (1934)Google Scholar
  11. Grim, M.: Differentiation of myoblasts and the relationship between somites and the wing bud of the chick embryo. Z. Anat. Entwickl.-Gesch. 132, 260–271 (1970)Google Scholar
  12. Gumpel-Pinot, M.: Contribution du mésoderme somitique a la genèse du membre chez l'embryon d'Oiseau. C.R. Acad. Sci., Paris 279, 1305–1308 (1974)Google Scholar
  13. Hamburger, V.: Morphogenetic and axial self-differentiation of transplanted limb primordia of 2-day chick embryos. J. exp. Zool. 77, 379–399 (1938)Google Scholar
  14. Hamburger, V.: The development and innervation of transplanted limb primordia of chick embryos. J. exp. Zool. 80, 347–389 (1939)Google Scholar
  15. Hamburger, V.: A manual of experimental embryology. 1st Edn., Chicago, Illinois: Univ. of Chicago Press, 1942Google Scholar
  16. Hamburger, V.; Hamilton, H.L.: A series of normal stages in the development of the chick embryo. J. Morph. 88, 49–92 (1951)Google Scholar
  17. Hara, K.: Micro-surgical operation on the chick embryo in ovo without vital staining. A modification of the intra-coelomic grafting technique. Mikroskope 27, 267–270 (1971)Google Scholar
  18. Hunt, E.A.: The differentiation of chick limb buds in chorio-allantoic grafts, with special reference to the muscles. J. exp. Zool. 62, 57–90 (1932)Google Scholar
  19. Jacob, H.J.: Experimentelle Untersuchungen zur Entstehung entodermaler Organanlagen. Inaug.-Diss. Göttingen (1970)Google Scholar
  20. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27, 137A-138A (1965)Google Scholar
  21. Le Douarin, N.: Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenèse. Bull. biol. Franc. Belg. 103, 435–452 (1969)Google Scholar
  22. Le Douarin, N.: Caractéritiques ultrastructurales du noyau interphasique chez la Caille et chez le Poulet et utilisation des cellules de Caille comme “marqueurs biologiques” en Embryologie expérimentale. Ann. Embryol. Morph. 4, 125–135 (1971)Google Scholar
  23. Le Douarin, N.: A biological cell labelling technique and its use in experimental embryology. Develop. Biol. 30, 217–222 (1973)Google Scholar
  24. Murray, P.D.F.: Chorio-allantoic grafts of fragments of two-day chick with special reference to the development of the limbs, intestine and skin. Australian J. Exp. Biol. and Med. 4, 237–256 (1927)Google Scholar
  25. New, D.A.T.: A new technique for the cultivation of the chick embryo in vitro. J. Embryol. exp. Morph. 3, 320–331 (1955)Google Scholar
  26. Pinot, M.: Le rôle du mésoderme somitique dans la morphogenèse précoce des membres de l'embryon de poulet. J. Embryol. exp. Morph. 23, 109–151 (1970)Google Scholar
  27. Saunders, J.W.: Do the somites contribute to the formation of the chick wing? Anat. Rec. 100, 756 (1948)Google Scholar
  28. Seno, T.: An experimental study on the formation of the body wall in the chick. Acta anat. (Basel), 45, 60–82 (1961)Google Scholar
  29. Steding, G.: Gestaltungsfunktionen des Ektoderm im Gebiet der Extremitätenanlagen. Habilitationsschrift Göttingen (1967)Google Scholar
  30. Straus, W.L., Rawles, M.E.: An experimental study of the origin of the trunk musculature and ribs in the chick. Am. J. Anat. 92, 471–509 (1953)Google Scholar
  31. Theiler, K.: Über die Differenzierung der Rumpfmyotome beim Menschen und die Herkunft der Bauchwandmuskeln. Acta anat. (Basel) 30, 842–864 (1957)Google Scholar
  32. Willier, B.H.: The endocrine glands and the development of the chick. I. The effects of thyroid grafts. Am. J. Anat. 33, 67–103 (1924)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • B. Christ
    • 1
  • H. J. Jacob
    • 1
  • M. Jacob
    • 1
  1. 1.Arbeitsgruppe für Experimentelle Embryologie und Lehrstuhl IInstitut für Anatomie der Ruhr-Universität BochumBochum-QuerenburgFederal Republic of Germany

Personalised recommendations