European Journal of Clinical Pharmacology

, Volume 39, Issue 6, pp 577–581 | Cite as

Rapid and slow benzbromarone elimination phenotypes in man: benzbromarone and metabolite profiles

  • I. Walter-Sack
  • J. X. de Vries
  • A. Ittensohn
  • E. Weber


Following oral administration of the uricosuric drug benzbromarone two major metabolites appear in the circulation, 1'-hydroxy-benzbromarone (M1), and a second product (M2) of unknown structure. The plasma concentrations of the parent drug and of M1 and M2 have now been compared in two different elimination phenotypes, 10 subjects who eliminated the drug rapidly (S1–10) and one individual (S11) whose elimination capacity was impaired, presumably due to genetic variation (S11). The AUC (0–96) of the parent drug in S11 was 145 gmg · ml−1 h, and in the other individuals it averaged 18.3 (11.4–24.5) μg · ml−1 h. The plasma elimination half life of benzbromarone was 3.34 (1.77–5.24) h in the rapid eliminators, and 13.08 h in the subject with the elimination defect. The mean plasma elimination half life of the metabolites in S1–10 amounted to 20.1 (11.9–41.2) h for M1, and 17.2 (12.9–30.7) h for M2. In S11 the plasma elimination half life of M1 was prolonged to 76.6 h, and of M2 to 75.4 h. Thus, the elimination defect in S11 was not restricted to the parent drug, but it also involved the two major metabolites M1 and M2. This might be a consequence of a hepatic enzyme deficiency, or be due to impairment of drug excretion.

Key words

Benzbromarone elimination phenotypes pharmacokinetics metabolism genetic variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Broekhuysen J, Pacco M, Sion R, Demeulenaere L, Hee M van (1972) Metabolism of benzbromarone in man. Eur J Clin Pharmacol 4: 125–130Google Scholar
  2. 2.
    Yü T-F (1976) Pharmacokinetic and clinical studies of a new uricosuric agent — benzbromarone. J Rheumatol 3: 305–312Google Scholar
  3. 3.
    Ferber H, Vergin H, Hitzenberger G (1981) Pharmacokinetics and biotransformation of benzbromarone in man. Eur J Clin Pharmacol 19: 421–435Google Scholar
  4. 4.
    Vries JX de, Walter-Sack I, Ittensohn A (1987) Analysis of benzbromarone in human plasma and urine by high — performance liquid chromatography and gas chromatography — mass spectrometry. J Chromatogr 417: 420–427Google Scholar
  5. 5.
    Walter-Sack I, Vries JX de, Ittensohn A, Weber E (1987) Benzbromarone disposition following single dose application. Evidence for lack of debromination. Klin Wochenschr 65 [Suppl 10]: 5Google Scholar
  6. 6.
    Vries JX de, Walter-Sack I, Löffler W (1987) The biotransformation of benzbromarone in humans. Characterisation of a new metabolite by gas chromatography mass spectrometry. Klin Wochenschr 65 [Suppl 10]: 10Google Scholar
  7. 7.
    Walter-Sack I, Vries JX de, Ittensohn A, Kohlmeier M, Weber E (1988) Benzbromarone disposition and uricosuric action; evidence for hydroxilation instead of debromination to benzarone. Klin Wochenschr 66: 160–166Google Scholar
  8. 8.
    Vries JX de, Walter-Sack I, Ittensohn A, Weber E (1989) The isolation, identification and structure of a new hydroxylated metabolite of benzbromarone in man. Xenobiotica 19: 1461–1470Google Scholar
  9. 9.
    Sieg A (1987) Unconjugated hyperbilirubinemia: New aspects in the diagnosis of Gilbert's syndrome. Inn Med 14: 105–108Google Scholar
  10. 10.
    SAS® Institute Inc. (1986) SAS® Procedures Guide and SAS/STATTM Guide for Personal Computers, 6th edn. Cary, NC, USA 1987Google Scholar
  11. 11.
    Kewitz H, Thomsen T (1983) Antidiabetica, Disulfiram, Eisen, Folsäure, Gichtmittel, Lipidsenker, Vitamin B12. In Weber E (Hrsg) Taschenbuch der unerwünschten Arzneiwirkungen. Fischer, Stuttgart, S71Google Scholar
  12. 12.
    Walter-Sack I, Eichelbaum M, Vries JX de, Weber E (1988) Benzbromarone biotransformation is not related to polymorphic oxidation of sparteine. Klin Wochenschr 66: 1097–1098Google Scholar
  13. 13.
    Walter Sack I (1989) Recent advances in uricosuric drug research. Ann Nutr Metabol 33: 203Google Scholar
  14. 14.
    Bonn R, Chasseaud LF, Grote H, John BA, Sandrock K, Wood SG (1986) Biotransformation of benzarone in man. Naunyn-Schmiedeberg's Arch Pharmacol 334 [Suppl]: R12Google Scholar
  15. 15.
    Wood SG, John BA, Chasseaud LF, Bonn R, Grote H, Sandrock K, Darragh A, Lambe RF (1987) Metabolic fate of the thrombolytic agent benzarone in man: Comparison with the rat and dog. Xenobiotica 17: 881–896Google Scholar
  16. 16.
    Staiger C, Simon B, Vries JX de, Kather H, Dammann HG, Walter E (1981) Comparative effects of ICI 125 211 and cimetidine on antipyrine kinetics. Br J Clin Pharmacol 11: 214–215Google Scholar
  17. 17.
    Küpfer A, Preisig R (1984) Pharmacogenetics of mephenytoin: A new drug hydroxilation polymorphism in man. Eur J Clin Pharmacol 26: 753–759Google Scholar
  18. 18.
    Walter-Sack I, Gresser U, Adjan M, Kamilli I, Ittensohn A, Vries JX de, Weber E, Zöllner N (1990) Variation of benzbromarone elimination in man — a population study. Eur J Clin Pharmacol 39: 173–176Google Scholar
  19. 19.
    Zöllner N, Gresser U, Walter-Sack I (1990) Deficient benzbromarone elimination: A familial disorder? Klin Wochenschr 68: 101Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • I. Walter-Sack
    • 1
  • J. X. de Vries
    • 1
  • A. Ittensohn
    • 1
  • E. Weber
    • 1
  1. 1.Abteilung Klinische Pharmakologie der Medizinischen Klinik der Universität HeidelbergHeidelbergFRG

Personalised recommendations