Anatomy and Embryology

, Volume 161, Issue 4, pp 419–431 | Cite as

Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis

  • Andreas Wree
  • Karl Zilles
  • Axel Schleicher


The growth of the nuclei habenulae medialis et lateralis of albino rats is described by monotonically increasing growth curves of fresh volumes during ontogenesis. The nucleus habenulae medialis matures earlier than the nucleus habenulae lateralis in the perinatal period. However, the two nuclei reach their final volume at about the same time. Simultaneous electron microscopic investigation reveals the phenomenon of spontaneous nerve cell degeneration within the nuclei habenulae during ontogenesis in spite of the non-overshooting growth curves for the habenular nuclei.

Key words

Nuclei habenulae Biomathematical Analysis Fresh Volume Rat Spontaneous Nerve Cell Degeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguayo AJ, Terry LC, Bray GM (1973) Spontaneous loss of axons in sympathetic unmyelinated nerve fibers of the rat during development. Brain Res 54:360–364Google Scholar
  2. Alley KE (1974) Morphogenesis of trigeminal mesencephalic nucleus in the hamster: cytogenesis and neurone death. J Embryol Exp Morphol 31:99–121Google Scholar
  3. Alley KE, DuBrul EL (1972) Neuronal death in morphogenesis of the mammalin mesencephalic nucleus. Anat Rec 172:261Google Scholar
  4. Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304Google Scholar
  5. Bodian D (1966) Spontaneous degeneration in the spinal cord of monkey fetuses. Bull Johns Hopkins Hosp 119:212–234Google Scholar
  6. Braitenberg V, Kemali M (1970) Exceptions to bilateral symmetry in the epithalamus of lower vertebrates. J Comp Neurol 138:137–146Google Scholar
  7. Brietze KH, Krysewski M (1978) Qualitative and quantitative Untersuchung des Nucl. motorius n. trigemini and ontogenetischen Reihen männlicher SPF-Katzen und Tupaia belangeri. Med Dissertation, Hannover, Fed Rep of GermanyGoogle Scholar
  8. Burck HC (1973) Histologische Technik. Thieme StuttgartGoogle Scholar
  9. Cantino D, Sisto Daneo L (1972) Cell death in the developing chick optic tectum. Brain Res 38:13–25Google Scholar
  10. Cowan WM (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Rockstein M (ed) Development and Aging in the Nervous System. Acad Press, New York pp 19–41Google Scholar
  11. Cowan WM, Wenger E (1967) Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle. J Exp Zool 164:267–280Google Scholar
  12. Cowan WM, Wenger E (1968) The development of the nucleus of origin of centrifugal fibers to the retina in the chick. J Comp Neurol 133:207–240Google Scholar
  13. Das GD, Hine RJ (1972) Nature and signficance of spontaneous degeneration of axons in the pyramidal tract. Z Anat Entwickl Gesch 136:98–114Google Scholar
  14. Draper NR, Smith H (1965) Applied regression analysis. John Wiley and Sons New YorkGoogle Scholar
  15. Einarson L (1932) A method for progressive selective staining of Nissl- and nuclear-substance in nerve cells. Am J Pathol 8:295–307Google Scholar
  16. Ernst M (1926) Über Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren. Z Anat Entwickl Gesch 79:228–262Google Scholar
  17. Fleischhauer K (1970) Über die postnatale Entwicklung des Stratum subcallosum in Vorderhorn des Seitenventrikels der Katze. Z Anat Entwickl Gesch 132:1–17Google Scholar
  18. Fujita S, Kitamura T (1975) Origin of brain macrophages and the nature of the so-called microglia. Acta Neuropath (Berl) Suppl VI 291–296Google Scholar
  19. Fujita S, Kitamura T (1976) Origin of brain macrophages and the nature of the microglia. In: Zimmermann HM (ed) Progress in Neuropathology. Grune & Stratton New York-San Francisco-London, Vol III pp 1–50Google Scholar
  20. Glücksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26:59–86Google Scholar
  21. Grottschreiber JF (1978) Qualitative und quantitative Untersuchungen des Nucleus mesencephalicus nervi trigemini and einer ontogenetischen Reihe von männlichen SPF-Katzen. Med Dissertation, Hannover, Fed Rep of GermanyGoogle Scholar
  22. Grzibiela G, Jersch W (1975) Qualitative und quantitative Untersuchung des Nucl. n. hypoglossi an einer ontogenetischen Reihe von männlichen Tupaia belangeri. J Hirnforsch 16:415–438Google Scholar
  23. Gurdjian ES (1927) The diencephalon of the albino rat. Studies on the brain of the rat. No. 2. J Comp Neurol 43:1–114Google Scholar
  24. Heinsen H (1977) Quantitative anatomical studies on the postnatal development of the cerebellum of the albino rat. Anat Embryol 151:201–218Google Scholar
  25. Jacobson M (1978) Developmental Neurobiology. Second ed. Plenum Press New York-LondonGoogle Scholar
  26. Kemali M, Agrelli I (1972) The habenular-interpeduncular nuclear system of a reptilian representative Lacerta sicula. Z mikrosk anat Forsch (Leipzig) 85:325–333Google Scholar
  27. Kretschman HJ, Wingert F (1971) Computeranwendungen bei Wachstumsproblemen in Biologie und Medizin. Springer Berlin-Heidelberg-New YorkGoogle Scholar
  28. Kretschmann HJ, Schleicher A, Wingert F, Zilles K (1975) Wachstumsparameter des Hirns und seiner Regionen bei Albinomaus, Tupaia belangeri und SPF-Katze. Anat Anz (Erg H) 138:517–525Google Scholar
  29. Kretschmann HJ, Schleicher A, Wingert F, Zilles K (1976) Morphometrische Analyse von Wachstumsvorgängen. Anat Anz (Erg H) 140:1035–1041Google Scholar
  30. Ling EA, Paterson JA, Privat A, Mori S, Leblond CP (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol 149:43–72Google Scholar
  31. MacKinnon PCB (1973) Changes in volume and incorporation of (35S)-or (3H)-methionine in the amygdala before and after puberty in male and female mice. Brain Res 50:115–123Google Scholar
  32. Maruyama S, D'Agostini AN (1967) Cell necrosis in the central nervous system of normal rat fetuses. An electron microscopy study. Neurology 17:550–558Google Scholar
  33. Matthews MA (1974) Microglia and reactive “M” cells of degenerating central nervous system. Does similar morphology and function imply a common origin. Cell Tiss Res 148:477–491Google Scholar
  34. Mlonyeni M (1967) The late stages of the development of the primary cochlear nuclei in mice. Brain Res 4:334–344Google Scholar
  35. Mori S, Leblond CP (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–80Google Scholar
  36. Nitschke C (1977) Qualitative und quantitative Untersuchungen der Area striata an einer ontogenetischen Reihe von männlichen Tupaia belangeri. J Hirnforsch 18:89–113Google Scholar
  37. Oehmichen M (1978) Mononuclear phagocytes in the central nervous system. Origin, mode of distribution, and function of progressive microglia, perivascular cells of intracerebral vessels, free subarachnoidal cells, and epiplexus cells. Schriftenreihe Neurologie/Neurology Series No. 21. In: Bauer HJ, Baumgarten G, Davison AN, Gänshirt H, Vogel P (eds). Springer Berlin-Heidelberg-New York pp 1–167Google Scholar
  38. Pannese E (1974) The histogenesis of the spinal ganglia. Adv Anat Embryol Cell Biol 47,5 Springer Berlin-Heidelberg-New YorkGoogle Scholar
  39. Peil J, Helwin H (1977) Quantitativ-analytische Erfassung des Körperlängenwachstums des Menschen. Gegenbaurs Morph Jahrb (Leipzig) 123:236–259Google Scholar
  40. Peters A, Palay SL, Webster H deF (1976) The fine structure of the nervous system: The neurons and supporting cells. Saunders Philadelphia-London-TorontoGoogle Scholar
  41. Phillips DD (1973) An electron microscopic study of macroglia and microglia in the lateral funiculus of the developing spinal cord in the fetal monkey. Z Zellforsch 140:145–167Google Scholar
  42. Reier PI, Hughes A (1972) Evidence for spontaneous axon degeneration during peripheral nerve maturation. Am J Anat 135:147–152Google Scholar
  43. Rogers LA, Cowan WM (1973) The development of the mesencephalic nucleus of the trigeminal nerve in the chick. J Comp Neurol 147:291–320Google Scholar
  44. Romanes GJ (1946) Motor localization and the effects of nerve injury on the ventral horn cells of the spinal cord. J Anat 80:117–131Google Scholar
  45. Romeis B (1968) Mikroskopische Technik. Oldenbourg MünchenGoogle Scholar
  46. Schlüter G (1973) Ultrastructural observation on cell necrosis during formation of the neural tube in mouse embryos. Z Anat Entwickl Gesch 141:251–264Google Scholar
  47. Sohal GS, Weidman TA (1978) Ultrastructural sequence of embryonic cell death in normal and peripherally deprived trochlear nucleus. Exp Neurol 61:53–64Google Scholar
  48. Torvik A, Skjörten F (1971) Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. II. Changes in the glial cells. Acta Neuropathol (Berl) 17:265–282Google Scholar
  49. Vaughn JE (1969) An electron microscopic analysis of gliogenesis in the rat optic nerves. Z Zellforsch 94:293–324Google Scholar
  50. Vaughn JE, Peters A (1968) A third neuroglial cell type. An electron microscopic study. J Comp Neurol 133:269–288Google Scholar
  51. Vaughn JE, Hinds PL, Skoff RP (1970) Electron microscopic studies of Wallerian degeneration in rat optic nerves. I. The multipotential glia. J Comp Neurol 140:175–206Google Scholar
  52. Walsh RJ, Brawer JR (1979) Cytology of the arcuate nucleus in newborn male and female rats. J Anat 128:121–133Google Scholar
  53. Wingert F (1969) Biometrische Analyse der Wachstumsfunktionen von Hirnteilen und Körpergewicht der Albinomaus. J Hirnforsch 11:133–197Google Scholar
  54. Zilles K (1978) Ontogenesis of the visual system. Adv Anat Embryol Cell Biol 54,3 Springer Berlin-Heidelberg-New YorkGoogle Scholar
  55. Zilles K, Wingert F (1973a) Quantitative studies of the development of the fresh volumes and the number of neurons of the nucl. n. oculomotorii of white mice during ontogenesis. Brain Res 56:63–75Google Scholar
  56. Zilles K, Wingert F (1973b) Biometrische Analyse der Frischvolumina und der Anzahl der motorischen Neurone des Nucl. n. oculomotorii einer ontogenetischen Reihe von Albinomäusen. Anat Anz (Erg H) 134:285–292Google Scholar
  57. Zilles K, Kretschmann HJ, Wingert F (1974) Biometrische Analyse der Neuronenanzahl des Nucl. n. oculomotorii und des Nucl. n. trochlearis einer ontogenetischen Reihe von Tupaia belangeri. Anat Anz (Erg H) 136:399–408Google Scholar
  58. Zilles K, Schleicher A, Wingert F (1975a) Spontaner Neuronenuntergang im Nucl. tractus mesenceph. n. trigemini während der Perinatalzeit einer ontogenetischen Reihe von Albinomäusen. Gegenbaurs Morph Jahrb (Leipzig) 121:289–299Google Scholar
  59. Zilles K, Schleicher A, Kretschmann HJ, Wingert F (1975b) Quantitative Untersuchungen über das Wachstum der Neuronen- und Gliazellanzahl in Kerngebieten verschiedener Species während der Ontogenese. Anat Anz (Erg H) 138:505–515Google Scholar
  60. Zilles K, Schleicher A, Wingert F (1976a) Quantitative Analyse des Wachstums der Frischvolumina limbischer Kerngebiete im Diencephalon und Mesencephalon einer ontogenetischen Reihe von Albinomäusen. I. Nucleus habenulae. J Hirnforsch 17:1–10Google Scholar
  61. Zilles K, Schleicher A, Wingert F (1976b) Quantitative Analyse des Wachstums der Frischvolumina limbischer Kerngebiete im Diencephalon einer ontogenetischen Reihe von Albinomäusen. II. Corpus mamillare. J Hirnforsch 17:11–20Google Scholar
  62. Zilles K, Kretschmann HJ, Wingert F (1977) Ergebnisse quantitativ-mikroskopischer Untersuchungen der Morphologie des visuellen Systems während der Ontogenese von Tupaia belangeri. Anat Anz (Erg H) 142:139–146Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Andreas Wree
    • 1
  • Karl Zilles
    • 1
  • Axel Schleicher
    • 1
  1. 1.Anatomisches Institut der Universität KielKiel 1Bundesrepublik Deutschland

Personalised recommendations