Histochemistry

, Volume 101, Issue 1, pp 57–62 | Cite as

Colocalization of cytokeratin 18 and villin in type III alveolar cells (brush cells) of the rat lung

  • M. Kasper
  • T. Rudolf
  • M. Müller
  • D. Höfer
  • D. Drenckhahn
  • J. Woodcock-Mitchell
  • A. Migheli
  • A. Attanasio
Original Paper

Abstract

Alveoli of the rat lung are lined by three different cell types, the flat type I cells and the cuboidal type II and type III cells. Type III cells differ from type II cells by the presence of an apical tuft of microvilli and the absence of lamellar type secretory granules. In the present study we show by double immunolabelling that type III cells of the rat lung can be identified at the light-and electron microscope level by antibodies against both cytokeratin 18 and the actin-crosslinking protein villin. At the ultrastructural level, microvilli and their rootlets in the apical cytoplasm were labelled by the anti-villin antibodies, whereas a monoclonal antibody against cytokeratin 18 (Ks18.04) labelled bundles of intermediate filaments. In conclusion, antibodies against villin and certain monoclonal antibodies specific for cytokeratin 18 can be used as tools for selective visualization of type III cells in the rat lung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosch FX, Leube RE, Achtstatter Th, Moll R, Franke WW (1988) Expression of simple epithelial type cytokeratins in stratified epithelia as detected by immunolocalization and hybridization in situ. J Cell Biol 106:1635–1648Google Scholar
  2. Chang L-Y, Mercer RR, Crapo (1986) Differential distribution of brush cells in the rat lung. Anat Rec 216:49–54Google Scholar
  3. Dormans JAMA (1983) The ultrastructure of various cell types in the lung of the rat: a survey. Exp Pathol 24:15–33Google Scholar
  4. Drenckhahn D, Mannherz HG (1983) Distribution of actin and the actin-associated proteins myosin, tropomyosin, alpha-actinin, vinculin, and villin in rat and bovine exocrine glands. Eur J Cell Biol 30:167–176Google Scholar
  5. Drenckhahn D, Hofmann H-D, Mannherz HG (1983) Evidence for the association of villin with core filaments and rootlets of intestinal epithelial microvilli. Cell Tissue Res 228:409–414Google Scholar
  6. Ellinger A, Pavelka M (1985) Post-embedding localization of glycoconjugates by means of lectins on thin sections of tissues embedded in LR White. Histochem J 17:1321–1336Google Scholar
  7. Funkhauser JD, Peterson RDA (1989) Immunotargeting: a contemporary approach to the study of lung development. Am J Physiol 257 (Lung Cell Mol Physiol 1):L311-L317Google Scholar
  8. Gomi T, Kimura A, Kikushi Y, Higashi K, Tsuchija H, Sasa S, Kishi K (1991) Electron microscopic observations of the alveolar brush cells of the rat. Acta Anat 141:294–301Google Scholar
  9. Höfer D, Drenckhahn D (1992) Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98:237–242Google Scholar
  10. Höfer D, Drenckhahn D (1993) Molecular heterogeneity of the actin filament cytoskeleton associated with microvilli of photoreceptors, Müller's glial cells and pigment epithelial cells of the retina. Histochemistry 99:29–35Google Scholar
  11. Kasper M (1992) Cytokeratins in intracranial and intraspinal tissues. Adv Anat Embryol Cell Biol 126:28–36Google Scholar
  12. Kasper M, Rudolf Th, Verhofstad AAJ, Schuh D, Müller M (1993a) Heterogeneity in the immunolocalization of cytokeratin specific monoclonal antibodies in the rat lung: evaluation of three different alveolar epithelial cell types. Histochemistry 100:65–72Google Scholar
  13. Kasper M, Rudolf T, Hahn R, Peterson I, Müller M (1993b) Immuno- and lectin histochemistry of epithelial subtypes and their changes in a radiation-induced lung fibrosis model of the mini pig. Histochemistry 100:367–377Google Scholar
  14. Luciano L, Reale E, Ruska H (1968) Über eine “chemorezeptive” Sinneszelle in der Treachea der Ratte. Z Zellforsch 85:350–375Google Scholar
  15. Major HD, Hampton JC, Rosario B (1961) A simple method for removing the resin from epoxy-embedded tissue. J Biophys Biochem Cytol 9:909–910Google Scholar
  16. Meyrich B, Reid L (1968) The alveolar brush cell in rat lung — a third pneumocyte. J Ultrastruct Res 23:71–80Google Scholar
  17. Migheli A, Attanasio A, Schiffer D (1992) LR gold embedding of nervous tissue for immunoelectron microscopy studies. Histochemistry 97:413–419Google Scholar
  18. Rhodin J, Dalham T (1956) Electron microscopy of the ciliated tracheal mucosa in rat. Z Zellforsch 44:345–412Google Scholar
  19. Schaffer J (1918) Veränderungen an Gewebselementen durch einseitige Wirkung der Fixierungsflüssigkeit und Allgemeines über Fixierung. Anat Anz 51:353–398Google Scholar
  20. Woodcock-Mitchell JL, Burkhardt AL, Mitchell JJ, Rannels SR, Rannels DE, Chiu J-F, Low RB (1986) Keratin species in type II pneumocytes in culture and during lung injury. Am Rev Respir Dis 134:566–571Google Scholar
  21. Woodcock-Mitchell J, Mitchell JJ, Reynolds SE, Leslie KO, Low RB (1990) Alveolar epithelial keratin expression during lung development. Am J Respir Cell Mol Biol 2:503–514Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. Kasper
    • 1
  • T. Rudolf
    • 1
  • M. Müller
    • 1
  • D. Höfer
    • 2
  • D. Drenckhahn
    • 2
  • J. Woodcock-Mitchell
    • 3
  • A. Migheli
    • 4
  • A. Attanasio
    • 4
  1. 1.Institute of PathologyMedical AcademyDresdenGermany
  2. 2.Institute of AnatomyUniversity of WürzburgWürzburgGermany
  3. 3.Department of Physiology and BiophysicsCollege of MedicineBurlingtonUSA
  4. 4.Institute of NeurologyUniversity of TurinTorinoItaly

Personalised recommendations