Advertisement

Anatomy and Embryology

, Volume 160, Issue 1, pp 105–119 | Cite as

Biomathematical analysis of the neuronal loss in the aging human brain of both sexes, demonstrated in pigment preparations of the pars cerebellaris loci coerulei

  • Andreas Wree
  • Heiko Braak
  • Axel Schleicher
  • Karl Zilles
Article

Summary

The pars cerebellaris loci coerulei is a flat accumulation of perikarya representing a subnucleus of the locus coeruleus in the roof of the fourth ventricle of the brain in man. A quantitative study was done on this subnucleus; it comprised 67 specimens from individuals between 11 and 90 years. Nerve cell counts were performed on cleared mounted block preparations. Mathematical analysis of the data was performed using logistic growth functions. The results showed that with advancing age there is a loss of neurons in both sexes. This begins in the female approximately after age 40; in the male already at age 20 (reaching a lower value in old age). The final loss of neurons is more pronounced in the male than in the female. Male and female specimens did not differ in the total number of neurons. In both sexes the left side of the pars cerebellaris loci coerulei contained more neurons than the right.

Key words

Pars cerebellaris loci coerulei Man Neuronal loss Aging Biomathematical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball MI (1977) Neuronal loss, neurofibrillary tangles and granulovascuolar degeneratio in the hippocampus with aging and dementia. Acta Neuropathol (Berl) 37:111–118Google Scholar
  2. Beheim-Schwarzbach D (1954) Lebensgeschichte der melaninhaltigen Nervenzellen des Nucleus coeruleus unter normalen und pathologischen Bedingungen. J Hirnforsch 1:62–85Google Scholar
  3. Blinkov SM, Glezer II (1968) Das Zentralnervensystem in Zahlen und Tabellen. Fischer, JenaGoogle Scholar
  4. Braak H (1975) On the pars cerebellaris loci coerulei within the cerebellum of man. Cell Tissue Res 160:279–282Google Scholar
  5. Brizzee KR (1975) Gross morphometric analyses and quantitative histology of the aging brain. In: JM Ordy and KR Brizzee (eds) Neurobiology of Aging. Plenum Press, New York-LondonGoogle Scholar
  6. Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–556Google Scholar
  7. Brody H (1970) Structural changes in the aging nervous system. In: HT Blumenthal (ed), Vol. 7. Interdisciplinary Topics in Gerontology. Karger, Basel-München-New YorkGoogle Scholar
  8. Brody H (1973) Aging in the vertebrate brain. In: M Rockstein (ed) Development and Aging in the nervous system. Academic Press, New YorkGoogle Scholar
  9. Brody H (1976) An examination of cerebral cortex and brainstem aging In: RD Terry and S Gerschon (eds). Neurobiology of Aging. Ravens Press, New YorkGoogle Scholar
  10. Buskirk C van (1945) The seventh nerve complex. J Comp Neurol 82:63–74Google Scholar
  11. Calligaris G (1908) Beitrag zum Studium der Zellen des “Locus coeruleus” und der Substantia nigra. Monatsschr Psych Neurol 24:339–355Google Scholar
  12. Delorenzi E (1932) Constanza numerica delle cellule di Purkinje del cervelletto dell' uomo in individui di varia etá. Z Zellforsch 14:310–316Google Scholar
  13. Draper NR, Smith H (1965) Applied regression analysis. John Wiley and Sons, New YorkGoogle Scholar
  14. Ellis RS (1919) A preliminary quantitative study of the Purkinje cells in normal, subnormal and senescent human cerebella, with some notes on functional localization. J Comp Neurol 30:229–252Google Scholar
  15. Ellis RS (1920) Norms for some structural changes in the human cerebellum from birth to old age. J Comp Neurol 32:1–33Google Scholar
  16. Fenichel GM, Bazelon M (1968) Studies on neuromelanin. II. Melanin in the brain stems of infants and children. Neurology 18:817–820Google Scholar
  17. Foley JM, Baxter D (1958) On the nature of pigment granules in the cells of the locus coeruleus and substantia nigra. J Neuropathl Exp Neurol 17:586–598Google Scholar
  18. Gardner EE (1940) Decrease in human neurones with age. Anat Rec 77:529–536Google Scholar
  19. Gellerstedt N (1933) Zur Kenntnis der Hirnveränderungen bei der normalen Altersinvolution. Upsala Läkarefören Förhandl Ny foljd 38:193–408Google Scholar
  20. Hanley T (1974) Neuronal fall-out in the aging brain: a critical review of the quantitative data. Age and Aging 3:133–151Google Scholar
  21. Harley RD (1942) A quantitative study of the cells and fibers in the nucleus: nerve complexes of the fourth and sixth cranial nerves. Am J Ophthalmol 29:1029–1042Google Scholar
  22. Haug H (1974) Wann beginnt der Alterungsprozeß im Gehirn? Möglichkeiten der quantitativen Untersuchungsverfahren. In: D Platt (ed). Altern. Zentralnervensystem-Pharmaka-Stoffwechsel. Schattauer, Stuttgart-New YorkGoogle Scholar
  23. Haug H (1975) Neuere Aspekte über den biologischen Alterungsvorgang im menschlichen Gehirn. Anat Anz (Erg-H) 138:389–395Google Scholar
  24. Hempel J-J (1974) Wege quantitativ-morphologischer und topischer Altersforschung am Gehirn des Menschen bis heute. In: D Platt (ed) Altern. Zentralnervensystem-Pharmaka-Stoffwechsel. Schattauer, Stuttgart-New YorkGoogle Scholar
  25. Hodge WL (1894) Changes in ganglion cells from birth to senile death. Observations on man and honey bee. J Physiol 17:129–134Google Scholar
  26. Höpker W (1951) Das Altern des Nucleus dentatus. Z Altersforsch 5:256–277Google Scholar
  27. Jacobsohn L (1909) Über die Kerne des menschlichen Hirnstammes. Abh Preuß Akad Wiss, physikmath Kl 1–70Google Scholar
  28. Konigsmark BW (1969) Neuronal population of the ventral cochlear nucleus in man. Anat Rec 163:212–213Google Scholar
  29. Konigsmark BW, Murphy EA (1970) Neuronal population in the human brain. Nature 228:1335–1336Google Scholar
  30. Konigsmark BW, Murphy EA (1972) Volume of the ventral cochlear nucleus in man: Its relationship to neuronal population and age. J Neuropathol Exp Neurol 31:304–316Google Scholar
  31. Kretschmann H-J, Wingert F (1971) Computeranwendungen bei Wachstumsproblemen in der Biologie und Medizin. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  32. Kretschmann H-J, Schleicher A, Wingert F, Zilles K, Löblich H-J (1979) Human brain growth in the 19th and 20th century. J Neurol Sci 40:169–188Google Scholar
  33. Loyda Z (1968) Kvantitativne studie o Purkynovych bynkach v lidskem mozecku. Cesk Morfol 3:66–78 (1955) (cited after Blinkov and Glezer)Google Scholar
  34. Maleci O (1934) Contributo alla consocenza delle variazioni quantitative delle cellule nervose nella senescenza. Arch Ital Anat Embryol 33:883–901Google Scholar
  35. Mann DMA, Yates PO (1974) Lipoprotein pigment — their relationship to aging in the human nervous system. II. The melanin content of pigmented nerve cells. Brain 97:489–498Google Scholar
  36. Mann DMA, Yates PO (1979) The effect of ageing on the pigmented nerve cells of the human locus caeruleus and substantia nigra. Acta Neuropathol (Berl) 47:93–97Google Scholar
  37. Meynert T (1872) Vom Gehirne der Säugetiere. In: S Stricker (ed) Handbuch der Lehre von den Geweben des Menschen und der Thiere. Vol II, Engelmann, LeipzigGoogle Scholar
  38. Moatamed F (1966) Cell frequencies in the human inferior olivary complex. J Comp Neurol 128:109–116Google Scholar
  39. Monagle RD, Brody H (1974) The effects of age upon the main nucleus of the inferior olive in the human. J Comp Neurol 155:61–66Google Scholar
  40. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel-New YorkGoogle Scholar
  41. Pearl R (1905) Biometrical studies on man. Variation and correlation in brainweight. Biometrica 4:13–104Google Scholar
  42. Peil J, Helwin H (1977) Quantitativ-analytische Erfassung des Körperlängenwachstums des Menschen. Gegenbaurs Morph Jahrb (Leipzig) 123:236–259Google Scholar
  43. Russel GV (1955) The nucleus locus coeruleus (dorsolateralis tegmenti). Texas Rep Biol Med 13:939–988Google Scholar
  44. Treff WM (1974) Das Involutionsmuster der Nucleus dentatus cerebelli. Eine morphometrische Analyse. In: D Platt (ed). Altern. Zentralnervensystem-Pharmaka-Stoffwechsel. Schattauer, Stuttgart-New YorkGoogle Scholar
  45. Vijayashankar N, Brody H (1971) The neuronal population of the nuclei of the trochlear nerve and the locus coeruleus in the human. Anat Rec 169:447Google Scholar
  46. Vijayashankar N, Brody H (1972) The neuronal population of the nuclei of the trochlear nerve and the locus coeruleus in the human. Anat Rec 172:421–422Google Scholar
  47. Vijayashankar N, Brody H (1977a) Aging in the human brain stem. A study of the nucleus of the trochlear nerve. Acta Anat 99:169–172Google Scholar
  48. Vijayashankar N, Brody H (1977b) A study of aging in the human abducens nucleus. J Comp Neurol 173:433–438Google Scholar
  49. Vijayashankar N, Brody H (1979) A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. J Neuropathol Exp Neurol 38:490–497Google Scholar
  50. Wilcox HH (1959) Structural changes in the nervous system related to the process of aging. In: JE Birren, HA Imus (eds). The process of aging in the nervous system. Blackwell Scientific Publ, OxfordGoogle Scholar
  51. Zilles K (1972) Biometrische Analyse der Frischvolumina verschiedener prosencephaler Hirnregionen von 78 menschlichen adulten Gehirnen. Gegenbaurs Morphol Jahrb (Leipzig) 118:234–273Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Andreas Wree
    • 1
  • Heiko Braak
    • 1
  • Axel Schleicher
    • 1
  • Karl Zilles
    • 1
  1. 1.Anatomisches Institut der Universität KielKielFederal Republic of Germany

Personalised recommendations