Advertisement

Archiv für Toxikologie

, Volume 29, Issue 3, pp 247–253 | Cite as

Hemmung der Acetylcholinesterase in 27 Abschnitten des Hundegehirns durch O-Aethyl-S-(2-dimethylaminoaethyl)-methylphosphonothioat in vivo

  • J. Bajgar
  • R. Urban
  • V. Hrdina
Originalarbeiten

Zusammenfassung

In 27 Arealen des Hundegehirns wurde die Aktivität der Acetylcholinesterase nach i.v.-Infusion von O-Aethyl-S-(2-dimethylaminoaethyl)-methylphosphonothioat (20.0 μg/kg innerhalb 10 min) gemessen. In allen untersuchten Hirnpartien war die AChE-Aktivität signifikant vermindert; die stärkste Hemmung wurde in den Kernen des Nervus vagus und hypoglossus sowie im Colliculus superior beobachtet.

Schlüsselwörter

Organophosphatvergiftung Acetylcholinesterase Hundegehirn 

In vivo Inhibition of acetylcholinesterase in 27 areas of the dog brain by o-ethyl-s-(2-dimethylaminoethyl) methylphosphonothioate

Abstract

Acetylcholinesterase activity in 27 areas of the dog brain was studied after i.v. infusion of O-ethyl-S-(2-dimethyl-aminoethyl) methylphosphonothioate, administered 20.0 μg/kg per 10 min. This activity was significantly decreased in all brain parts studied; the greatest decrease was observed in the nucleus nervi vagi, hypoglossi and in the colliculus superior.

Key words

Organophosphorus Poisoning Acetylcholinesterase Dogs Brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bajgar, J., Patočka, J.: Sensitivity comparison of the three methods for determination of cholinesterase activity (in Czech). Sborn věd. Prací VLVDÚ 44, 3–8 (1969).Google Scholar
  2. —, Jakl, A.: Die Hemmung der Acetyleholinesterase in Blut und Gehirn der Ratte nach Pinacolylmethylphosphonofluoridate (Tschechisch). Voj. zdravotn. Listy 39, 253–255 (1970).Google Scholar
  3. —, Urban, R.: Activity of acetylcholinesterase in different parts of the rat brain (in Czech). Suppl. Sborn věd. Prací lék. Fak. Hradci Králové 13, 219–227 (1970).Google Scholar
  4. —, Inhibition of acetylcholinesterase in different parts of the brain of mice by isopropylmethyl phosphonofluoridate in vitro and in vivo. Arch. Toxikol. 27, 233–241 (1971).Google Scholar
  5. —, Tulach, J., Jakl, A., Patočka, J.: (1) Differences in anticholinesterase action of some organophosphorus compounds in vivo. Acta biol. med. germ. 27, 171–178 (1971).Google Scholar
  6. —, Jakl, A., Hrdina, V.: (2) The influence of trimedoxime and atropine on acetylcholinesterase activity in some parts of the brain of mice poisoned by isopropylmethyl phosphonofluoridate. Biochem. Pharmacol. 20, 3230–3233 (1971).Google Scholar
  7. — Inhibition of acetylcholinesterase in different parts of the rat brain by isopropyl methylphosphonofluoridate; in vitro and in vivo experiments. Biochem. Pharmacol. 21, 687–694 (1972).Google Scholar
  8. Bennett, E. L., Rosenzweig, M. R., Krech, D., Ohlander, A., Morimoto, H.: Cholinesterase activity and protein content of rat brain. J. Neurochem. 6, 210–218 (1961).Google Scholar
  9. —, Diamond, M. C., Morimoto, H., Hebert, M.: Acetylcholinesterase activity and weight measures in fifteen brain areas from six lines of rats. J. Neurochem. 13, 563–572 (1966).Google Scholar
  10. Burgen, A. S. V., Chipman, L. M.: Cholinesterase and succinic dehydrogenase in the central nervous system of the dog. J. Physiol. (Lond.) 114, 296–305 (1951).Google Scholar
  11. Ellman, G. L., Courtney, D. K., Andres, V., Featherstone, R. M.: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).Google Scholar
  12. Fahn, S., Rodman, J. S., Côté, L. J.: Association of tyrosine hydroxylase with synaptic vesicles in bovine caudate nucleus. J. Neurochem. 16, 1293–1300 (1969).Google Scholar
  13. Gerebtzoff, M. A.: Contribution à la morphologie comparée des appareils cholinestérasiques myo-neural et musculo-tendineux des vertèbres. Ann. Histochim. 1, 145–159 (1956).Google Scholar
  14. Green A. L.: The kinetic basis of organophosphate poisoning and its treatment. Biochem. Pharmacol. 1, 115–128 (1958).Google Scholar
  15. Hraška, M., Tulach, J.: Contribution to automatization of evaluation of experimental data in experimental medicine. Programmes for Minsk 22 computer (in Czech). VLVDÚ Hradec Králové (1966).Google Scholar
  16. Koelle, G. B., Friedenwald, J. S.: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.) 70, 617–622 (1949).Google Scholar
  17. —, Steiner, E. C.: The cerebral distributions of a tertiary and a quarternary anticholinesterase agent following intravenous and intraventricular injection. J. Pharmacol. exp. Ther. 118, 420–434 (1956).Google Scholar
  18. Patočka, J., Bajgar, J.: Some enzymatic properties of human brain acetylcholinesterase. FEBS Letters 2, 195–197 (1969).Google Scholar
  19. Prosser, C. L., Brown, F. A.: Comparative animal physiology. 2nd Ed., 1–688. Philadelphia-London: W. B. Saunders Co. 1961.Google Scholar
  20. Roth, Z., Josífko, M., Malý, V., Trčka, V.: Statistische Methoden in der experimentellen Medizin (Tschechisch). SZdN Praha 1962, S. 119.Google Scholar
  21. Schaumann, W.: Bestimmung der Cholinesterase-Aktivität in vitro und Berechnung der Aktivität in vivo nach Vergiftung mit Alkylphosphaten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 81–95 (1960).Google Scholar
  22. Urban, R.: Changes of activity of cholinesterases in the central and peripheral nervous system following organophosphate poisoning and its treatment. A histochemical study (in Czech). Sborn věd. Prací VLVDÚ 45, 89–104 (1969).Google Scholar
  23. Weber, E.: Grundriß der biologischen Statistik, S. 628. Jena: VEB Gustav Fischer 1967.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • J. Bajgar
    • 1
  • R. Urban
    • 1
  • V. Hrdina
    • 1
  1. 1.Medizinisches Forschungsinstitut J. E. PurkyněHradec KrálovéTschechoslowakei

Personalised recommendations