Current Genetics

, Volume 26, Issue 2, pp 172–178

Genetic analysis of DNA fingerprints and virulences in Erysiphe graminis f.sp. hordei

  • James K. M. Brown
  • Craig G. Simpson
Original Articles

Abstract

A DNA probe, E9, which has been used extensively in population genetic studies of the barley powdery mildew pathogen, Erysiphe graminis f.sp. hordei, was shown to be homologous to dispersed sequences in the genome of this fungus. In a cross of the isolates CC52 and DH14, fragments with homology to E9 mapped to six clusters of loci. Avirulences matching five resistance genes in barley were controlled by single genes, in accordance with the gene-for-gene hypothesis, while avirulence matching a sixth resistance gene, Mla13, was controlled by two genes. A gene which controls the response to a fungicide, ethirimol, was not linked to any other gene. In all, seven linkage groups, comprising 22 loci, were detected. The results indicate that E9 can be used to identify members of a clone of E.g. f.sp. hordei, but should not be used for quantitative population genetic analysis.

Key words

Genetic fingerprint Powdery mildew Avirulence Gene-for-gene hypothesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borbye L, Linde-Laursen I, Christiansen SK, Giese H (1992) Mycol Res 96: 97–102Google Scholar
  2. Brown JKM, Jørgensen JH (1991) In: Jørgensen JH (ed) Integrated control of cereals mildews: virulence patterns and their change. Risø National Laboratory, Roskilde, pp 263–286Google Scholar
  3. Brown JKM, Wolfe MS (1990) Plant Pathol 39: 376–390Google Scholar
  4. Brown JKM, O'Dell M, Simpson CG, Wolfe MS (1990) Plant Pathol 39: 391–401Google Scholar
  5. Brown JKM, Jessop AC, Rezanoor HN (1991) Proc Roy Soc London B246: 83–90Google Scholar
  6. Brown JKM, Jessop AC, Thomas S, Rezanoor HN (1992) Plant Pathol 41: 126–135Google Scholar
  7. Brown JKM, Simpson CG, Wolfe MS (1993) Plant Pathol 42: 108–115Google Scholar
  8. Christiansen SK, Giese H (1990) Theor Appl Genet 79: 705–712Google Scholar
  9. Flor HH (1956) Adv Genet 8: 29–54Google Scholar
  10. Giese H (1981) Hereditas 95: 51–62Google Scholar
  11. Goodwin SB, Drenth A, Fry WE (1992) Curr Genet 22: 107–115Google Scholar
  12. Hamer JE, Givan S (1990) Mol Gen Genet 223: 487–495Google Scholar
  13. Hollomon DW (1981) Phytopathology 71: 536–540Google Scholar
  14. Jones IT, Davies IJER (1985) Euphytica 34: 499–507Google Scholar
  15. Jørgensen JH (1988) Adv Plant Pathol 6: 137–157Google Scholar
  16. Kohn LM, Stasovski E, Carbone E, Royer J, Anderson JB (1991) Phytopathology 81: 480–485Google Scholar
  17. Kosambi DD (1944) Ann Eugen 13: 172–175Google Scholar
  18. McDonald BA, Martinez JP (1991) Exp Mycol 15: 146–158Google Scholar
  19. Mather K (1938) The measurement of linkage in heredity. Methuen, LondonGoogle Scholar
  20. Milgroom MG, Lipari SE, Powell WA (1992) Genetics 131: 297–306Google Scholar
  21. Moseman JG (1963) Phytopathology 53: 1326–1330Google Scholar
  22. Moseman JG, Jørgensen JH (1971) Crop Sci 11: 547–550Google Scholar
  23. Moseman JG, Jørgensen JH (1973) Euphytica 22: 189–196Google Scholar
  24. Moseman JG, Macer RCF, Greeley LW (1965) Trans Br Mycol Soc 48: 479–489Google Scholar
  25. Nei M (1973) Proc Natl Acad Sci USA 70: 3321–3323Google Scholar
  26. O'Dell M, Wolfe MS, Flavell RB, Simpson CG, Summers RW (1989) Plant Pathol 38: 340–351Google Scholar
  27. Rasmussen M, Rossen L, Giese H (1993) Mol Gen Genet 239: 298–303Google Scholar
  28. Smedegård-Petersen V (1967) Roy Vet Agric Univ Yearbook 1967: 1–28Google Scholar
  29. Wiberg A (1974) Hereditas 77: 89–148Google Scholar
  30. Wolfe MS (1984) Plant Pathol 33: 451–466Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • James K. M. Brown
    • 1
  • Craig G. Simpson
    • 1
  1. 1.John Innes CentreNorwichUK
  2. 2.Department of Cellular and Molecular GeneticsScottish Crop Research InstituteDundeeScotland

Personalised recommendations