Current Genetics

, Volume 17, Issue 1, pp 1–6 | Cite as

Heterologous expression of human 5-aminolevulinate dehydratase in Saccharomyces cerevisiae

  • Wren E. Schauer
  • James R. Mattoon
Original Articles


A cDNA coding for human 5-aminolevulinate dehydratase was placed in a yeast expression vector under the control of the GAL10 promoter. The resulting multicopy plasmid was then used to transform a yeast mutant which contains a defective hem2 gene coding for 5-aminolevulinate dehydratase. Expression of the human cDNA was shown in four ways: (1) restoration of normal growth on glycerol/galactose as primary carbon source, (2) decrease in intracellular 5-aminolevulinic acid concentration, (3) restoration of cytochrome biosynthesis and (4) direct, in situ assay of 5-aminolevulinic acid dehydratase. Curing transformed cells of plasmid restored the hem2 mutant phenotype. This heterologous system could be used to produce large quantities of human 5-aminolevulinic acid dehydratase for physical and biochemical studies.

Key words

Human ALA dehydratase Yeast expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson PM, Desnick RJ (1979) J Biol Chem 254:6924–6930Google Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Siedman JG, Struhl K (eds) (1987) Current protocols in molecular biology. Wiley Interscience, New YorkGoogle Scholar
  3. Boeke JF, La Croute F, Fink GR (1984) Mol Gen Genet 197:345–346Google Scholar
  4. Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchomb DT, Struhl K, Davis RW (1979) Gene 8:17–24Google Scholar
  5. Borralho LM, Panek AD, Malamud DR, Sanders HK, Mattoon JR (1983) J Bacteriol 156:141–147Google Scholar
  6. Borralho LM, Ortiz CHD, Panek AD, Mattoon JR (1989) Yeast: (in press)Google Scholar
  7. Broach J, Li YY, Wu LCC (1983) Vectors for high-level inducible expression of cloned genes in yeast. In: Inouye M (ed) Experimental manipulation of gene expression. Academic Press, New York, pp 83–117Google Scholar
  8. Davis LG, Dibner MD, Battey JF (1986) Basic methods in molecular biology. Elsevier, New York, pp 90–93Google Scholar
  9. de Barreiro OLC (1967) Biochim Biophys Acta 139:479–486Google Scholar
  10. Gibbs PNB, Chaudry A, Jordan PM (1985) Biochem J 230:25–30Google Scholar
  11. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  12. Malamud DR, Borrhalho LM, Panek AD, Mattoon JR (1979) J Bacteriol 138:799–804Google Scholar
  13. Myers AM, Crivelone MD, Koerner TJ, Tzagoloff A (1987) J Biol Chem 262:16822–16829Google Scholar
  14. St John TP, Davis RW (1979) Cell 16: 443–452Google Scholar
  15. St John TP, Davis RW (1981) J Mol Biol 152:285–315Google Scholar
  16. Wetmur JG, Bishop DF, Cantelmo C, Desnick RJ (1986) Proc Natl Acad Sci USA 83:7703–7707Google Scholar
  17. Wu WH, Shemin D, Richards KE, Williams RC (1974) Proc Natl Acad Sci USA 71:1767–1770Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Wren E. Schauer
    • 1
  • James R. Mattoon
    • 1
  1. 1.Biotechnology CenterUniversity of ColoradoColorado SpringsUSA

Personalised recommendations