Current Genetics

, Volume 20, Issue 1–2, pp 161–166

The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones

  • Jonas Lidholm
  • Petter Gustafsson
Original Articles


Overlapping restriction fragments of chloroplast DNA from the conifer Pinus contorta were cloned. Out of a total of 49 clones, 33 comprise the minimum set required to represent the entire genome. Using the purified inserts of these clones as probes in filter hybridizations, all sites for the three restriction enzymes KpnI, HapI and SacI in the P. contorta chloroplast genome were mapped. Heterologous filter hybridizations and sequence analysis of some of the P. contorta clones were used to determine the position of 15 genes on the restriction map. The size of the genome, which lacks an inverted repeat organization, was found to be approximately 121 kilobase pairs (kbp). Unusual features of this genome are a duplication of the psbA gene and the presence of two genes, gidA and frxC, which are not found in angiosperms. The genome appeared essentially colinear with that of Pinus radiata, for which a map has previously been published. Two different restriction fragment length polymorphisms were found to be produced by variable numbers of copies of 124 bp-and 150 bp-long, tandemly repeated elements.

Key words

Chloroplast genome Conifer Gymnosperm Restriction fragment length polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt J, Morris J, Westhoff P, Herrmann RG (1984) Curr Genet 8:597–606Google Scholar
  2. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heynecker HL, Boyer HW, Crosa JH, Falkow S (1977) Gene 2:95–113Google Scholar
  3. Bonham-Smith PC, Bourque DP (1989) Nucleic Acids Res 17:2057–2080Google Scholar
  4. Dron M, Rahire M, Rochaix J-D (1982) J Mol Biol 162:775–793Google Scholar
  5. Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix J-D (1991) Cell 65:135–143Google Scholar
  6. Hanley-Bowdoin L, Chua N-H (1987) Trends Biochem Sci 12:67–70Google Scholar
  7. Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) FEBS Lett 176:239–244Google Scholar
  8. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194Google Scholar
  9. Knoll AH, Rothwell GW (1981) Paleobiology 7:7–35Google Scholar
  10. Lidholm J, Szmidt AE, Hällgren J-E, Gustafsson P (1988) Mol Gen Genet 212:6–10Google Scholar
  11. Lidholm J, Szmidt AE, Gustafsson P (1991) Mol Gen Genet (in press)Google Scholar
  12. Morris J, Herrmann RG (1984) Nucleic Acids Res 12:2837–2850Google Scholar
  13. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574Google Scholar
  14. Ohyama K, Kohchi T, Sano T, Yamada Y (1988) Trends Biochem Sci 13:19–22Google Scholar
  15. Palmer JD (1985) Annu Rev Genet 19:325–354Google Scholar
  16. Palmer JD, Thompson WF (1982) Cell 29:537–550Google Scholar
  17. Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Ann Missouri Bot Gard 75:1180–1206Google Scholar
  18. Rochaix JD (1978) J Mol Biol 126:597–617Google Scholar
  19. Ruf M, Kössel H (1988) FEBS Lett 240:41–44Google Scholar
  20. Shinozaki K, Ohme M, Tanaka M, Wakazugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049Google Scholar
  21. Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Proc Natl Acad Sci USA 85:3898–3902Google Scholar
  22. Szmidt AE, Lidholm J, Hällgren J-E (1986) In: Lindgren D (ed) Provenances and forest tree breeding for high latitudes. Proceedings of the Frans Kempe symposium, Umeå, pp 269–280Google Scholar
  23. Szmidt AE, El-Kassaby YA, Sigurgeirsson A, Aldén T, Lindgren D, Hällgren J-E (1988) Theor Appl Genet 76:841–845Google Scholar
  24. Takeshita S, Sato M, Toba M, Masahashi W, Hashimoto-Gotoh T (1987) Gene 61:63–74Google Scholar
  25. Tomioka N, Shinozaki K, Sugiura M (1981) Mol Gen Genet 184:359–363Google Scholar
  26. Umesono, K, Ozeki H (1987) Trends Genet 3:281–287Google Scholar
  27. Wagner DB, Furnier GR, Saghai-Marof MA, Williams SM, Dancik BP, Allard RW (1987) Proc Natl Acad Sci USA 84:2097–2100Google Scholar
  28. White EE (1990) Theor Appl Genet 79:119–124Google Scholar
  29. Vieira J, Messing J (1982) Gene 19:259–268Google Scholar
  30. Wolfe KH, Sharp PM (1988) Gene 66:215–222Google Scholar
  31. Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989) Proc Natl Acad Sci USA 86:6201–6205Google Scholar
  32. Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119Google Scholar
  33. Zurawski G, Clegg MT (1987) Annu Rev Plant Physiol 38:391–418Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jonas Lidholm
    • 1
  • Petter Gustafsson
    • 1
  1. 1.Department of Plant PhysiologyUniversity of UmeåUmeåSweden

Personalised recommendations