Current Genetics

, Volume 20, Issue 1–2, pp 87–90 | Cite as

Over-expression, purification and determination of the proteolytic processing site of the yeast mitochondrial CBS1 protein

  • A. Körte
  • U. Michaelis
  • F. Lottspeich
  • G. Rödel
Original Articles

Summary

Yeast transformats harboring the CBS1 gene under the control of the strong ADC1 promoter on a high copy number plasmid express the mitochondrial CBS1 protein at artificially high levels. Over-expressed protein is imported into mitochondria and correctly processed to vield the mature mitochondrial 23.5 kDa form, but differs in its solubility properties from CBS1 in wild-type mitochondria. It forms insoluble protein aggregates, which are refractory to solubilization with 1% Taurodeoxycholate. We exploited this observation to separate CBS1 from the bulk of mitochondrial proteins and to isolate CBS1 after SDS gel electrophoresis. Determination of the amino-terminal amino acids of the purified protein reveals that the mature CBS1 protein starts with Ile30, at the characteristic distance of +2 amino acids from an arginine residue (Arg28). The cleavage site shows a remarkable homology to that of subunit 9 of the F0F1 ATPase from Neurospora crassa.

Key words

CBS1 protein Protein purification Mitochondrial presequence Protein sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammerer G (1983) Methods Enzymol 101: 192–201Google Scholar
  2. Daum G, Böhni PC, Schatz G (1982) J Biol Chem 257: 13028–13033Google Scholar
  3. Eckerskorn C, Mewes W, Goretzki H, Lottspeich F (1988) Eur J Biochem 176: 509–519Google Scholar
  4. Edman P, Begg G (1967) Eur J Biochem 1: 80–91Google Scholar
  5. Forsbach V, Pillar T, Gottenöf T, Rödel G (1989) Mol Gen Genet 218: 57–63Google Scholar
  6. Gampel A, Nishikimi M, Tzagoloff A (1989) Mol Cell Biol 9: 5424–5433Google Scholar
  7. Hartl F-U, Pfanner N, Nicholson DW, neupert W (1989) Biochim Biophys Acta 988: 1–45Google Scholar
  8. Hawlischek G, Schneider H, Schmidt B, Tropschug M, Hartl F-U, Neupert W (1988) Cell 53: 795–806Google Scholar
  9. Jensen RE, Yaffe MP (1988) EMBO J 7: 3863–3871Google Scholar
  10. Körte A, Forsbach V, Gottenöf T, Rödel G (1989) Mol Gen Genet 217: 162–167Google Scholar
  11. Laemmli UK (1970) Nature 227: 680–685Google Scholar
  12. Marres CAM, Van Loon APGM, Oudshoorn P, Van Steeg H, Grivell LA, Slater EC (1985) Eur J Biochem 14: 153–161Google Scholar
  13. Michaelis U, Rödel G (1990) Mol Gen Genet 223: 394–400Google Scholar
  14. Muroff I, Tzagoloff A (1990) EMBO J 9: 2765–2773Google Scholar
  15. Pollock RA, Hartl F-U, Cheng MY, Ostermann J, Horwich A, Neupert W (1988) EMBO J 7: 3493–3500Google Scholar
  16. Rödel G, Körte A, Kaudewitz F (1985) Curr Genet 9: 641–648Google Scholar
  17. Rödel G, Fox TD (1987) Mol Gen Genet 206: 45–50Google Scholar
  18. Schmidt B, Wachter E, Sebald W, Neupert W (1984) Eur J Biochem 144: 581–588Google Scholar
  19. Schneider A, Behrens M, Scherer P, Pratje E, Michaelis G, Schatz G (1991) EMBO J 10: 247–254Google Scholar
  20. Weber ER, Dieckmann CL (1990) J Biol Chem 265: 1594–1600Google Scholar
  21. Witte C, Jensen RE, Yaffe MP, Schatz G (1988) EMBO J 7: 1439–1447Google Scholar
  22. Yang M, Jensen RE, Yaffe MP, Oppliger W, Schatz G (1988) EMBO J 7: 3857–3862Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Körte
    • 1
  • U. Michaelis
    • 1
  • F. Lottspeich
    • 2
  • G. Rödel
    • 3
  1. 1.Lehrstuhl für GenetikUniversität MünchenMünchenFederal Republic of Germany
  2. 2.Max-Planck-Institut für BiochemicGenzentrumMartinsriedFederal Republic of Germany
  3. 3.Labor für Molekulare Biologie und Allgemeine Pathologie, Institut für PathologieUniversität UlmMünchen 45Federal Republic of Germany

Personalised recommendations