Current Genetics

, Volume 19, Issue 6, pp 429–433

The SNQ3 gene of Saccharomyces cerevisiae confers hyper-resistance to several functionally unrelated chemicals

  • Karin Hertle
  • Eckard Haase
  • Martin Brendel
Original Articles

Summary

A multi-copy plasmid containing the SNQ3 gene confers hyper-resistance to 4-nitroquinoline-N-oxide (4NQO), Trenimon, MNNG, cycloheximide, and to sulfometuron methyl in yeast transformants. Restriction analysis, subcloning, and DNA sequencing revealed an open reading frame of 1950 bp on the SNQ3-containing insert DNA. Gene disruption and transplacement into chromosomal DNA yielded 4NQO-sensitive null mutants which were also more sensitive than the wild-type to Trenimon, cycloheximide, sulfometuron methyl, and MNNG. Hydropathic analysis showed that the SNQ3-encoded protein is most likely not membrane-bound, while the codon bias index points to low expression of the gene.

Key words

Mutagen hyper-resistance Yeast Base sequence Gene disruption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1988) Current protocols in molecular biology, vols 1 and 2. Wiley Interscience, New YorkGoogle Scholar
  2. Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) J Biol Chem 262: 16871–16879Google Scholar
  3. Bennetzen JL, Hall BD (1982) J Biol Chem 257: 3026–3031Google Scholar
  4. Birnboim HG, Doly J (1979) Nucleic Acids Res 7: 1513–1523Google Scholar
  5. Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41: 459–472Google Scholar
  6. Brendel M, Mack M, Gömpel-Klein P, Haase E (1990) Dechema Biotechnol Conf 3: 287–290Google Scholar
  7. Carlson M, Botstein D (1982) Cell 28: 145–154Google Scholar
  8. Chaleff RS, Mauvais CJ (1984) Science 224: 1443–1444Google Scholar
  9. Chen C, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Cell 47:381–389Google Scholar
  10. Dagert M, Ehrlich SD (1979) Gene 6: 23–28Google Scholar
  11. Del Sal G, Manfioletti G, Schneider C (1988) Nucleic Acids Res 16: 9878Google Scholar
  12. Endicott AE, Ling V (1989) Annu Rev Biochem 58: 137–171Google Scholar
  13. Falco SC, Dumas KS (1985) Genetics 109: 21–35Google Scholar
  14. Fleer R, Brendel M (1979) Mol Gen Genet 176: 41–52Google Scholar
  15. Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KL, Ling V (1986) Nature 324: 485–489Google Scholar
  16. Gömpel-Klein P, Brendel M (1990) Curr Genet 18: 93–96Google Scholar
  17. Gömpel-Klein P, Mack M, Brendel M (1989) Curr Genet 16: 65–74Google Scholar
  18. Gros P, Croop J, Housman D (1986a) Cell 47: 371–380Google Scholar
  19. Gros P, Neriah YB, Croop JM, Housman DE (1986b) Nature 1323: 728–731Google Scholar
  20. Haase E (1990) Doctoral Thesis, FB Biologie der J. W. Goethe-Universität, Frankfurt am Main, Federal Republic of GermanyGoogle Scholar
  21. Haase F, Riehl D, Mack M, Brendel M (1989) Mol Gen Genet 218: 64–71Google Scholar
  22. Hammond JR, Johnstone RM, Gros P (1989) Cancer Res 49: 3867–3871Google Scholar
  23. Henikoff S (1984) Gene 28: 351–359Google Scholar
  24. Henikoff S (1987) Methods Enzymol 15: 156–165Google Scholar
  25. Huisman O, Raymond W, Froehlich KU, Errada P, Kleckner N, Botstein D, Hoyt MA (1987) Genetics 116: 191–199Google Scholar
  26. Käppeli O (1986) Microbiol Rev 50: 244–258Google Scholar
  27. Ito H, Fukuda J, Murata K, Kimura A (1983) J Bacteriol 153: 163–168Google Scholar
  28. Kanazawa S, Driscoll M, Struhl K (1988) Mol Cell Biol 8: 664–673Google Scholar
  29. Kyte J, Doolittle RF (1982) J Mol Biol 157: 105–132Google Scholar
  30. Leppert G, McDevitt R, Falco SC, VanDyk TK, Ficke MB, Golin J (1990) Genetics 125: 13–20Google Scholar
  31. Mack M, Gömpel-Klein P, Haase E, Hietkamp J, Ruhland A, Brendel M (1988) Mol Gen Genet 211: 260–265Google Scholar
  32. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  33. McGrath JP, Varshavsky A (1989) Nature 340: 400–404Google Scholar
  34. Meister A, Anderson ME (1983) Annu Rev Biochem 52: 711–760Google Scholar
  35. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  36. Nebert DW (1987) Annu Rev Biochem 56: 945–993Google Scholar
  37. Pickett CB (1989) Annu Rev Biochem 58: 743–764Google Scholar
  38. Rank GH (1986) Can J Genet Cytol 28: 852–855Google Scholar
  39. Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V (1985) Nature 316: 817–819Google Scholar
  40. Rodriguez RL, Tait RC (1983) Recombinant DNA-techniques (an introduction). Addison-Wesley, LondonGoogle Scholar
  41. Roninson IB, Abelson HT, Housman DE, Howell N, Varshavsky A (1984) Nature 309:626–628Google Scholar
  42. Rothstein RJ (1983) Methods Enzymol 101: 202–209Google Scholar
  43. Ruhland AR, Brendel M (1979) Genetics 92: 83–97Google Scholar
  44. Ruhland AR, Haase E, Siede W, Brendel M (1981) Mol Gen Genet 181: 346–351Google Scholar
  45. Ruhland AR, Brendel M, Haynes RH (1986) Curr Genet 11: 211–215Google Scholar
  46. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  47. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  48. Saunders GW, Rank CH (1982) Can J Genet Cytol 24: 493–503Google Scholar
  49. Siede W (1926) Doctoral Thesis, FB Biologie der J. W. Goethe-Universität, Frankfurt am Main, Federal Republic of GermanyGoogle Scholar
  50. Subik J, Ulaszewski S, Goffeau A (1986) Curr Genet 10: 665–670Google Scholar
  51. Sugimura T, Okabe K, Endo H (1965) Gann 58: 489–501Google Scholar
  52. Tada, M (1981) In: Sugimura T (ed), Carcinogenesis vol. 6. Raven Press, New York, pp 25–45Google Scholar
  53. Tada M, Tada M (1975) Nature 255: 510–512Google Scholar
  54. Tautz D, Renz M (1983) Anal Biochem 132: 114–119Google Scholar
  55. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) EMBO J 1: 945–951Google Scholar
  56. Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N (1984) Gene 32: 369–379Google Scholar
  57. Wehner E, Seelmann K, Brendel M (1991) Mol Gen Genet (submitted)Google Scholar
  58. Zaret KS, Sherman F (1982) Cell 28: 563–573Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Karin Hertle
    • 1
  • Eckard Haase
    • 1
  • Martin Brendel
    • 1
  1. 1.Institut für Mikrobiologie der J.W. Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations