Advertisement

Letters in Mathematical Physics

, Volume 37, Issue 4, pp 467–474 | Cite as

On the first-order operators in bimodules

  • Michel Dubois-Violette
  • Thierry Masson
Article

Abstract

We analyse the structure of the first-order operators in bimodules introduced by A. Connes. We apply this analysis to the theory of connections on bimodules, thereby generalizing several proposals.

Mathematics Subject Classification (1991)

16D20 

Key words

Noncommutative differential geometry bimodules differential operators symbols connections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki.: Algèbre I, Chapitre III, Hermann, Paris, 1970.Google Scholar
  2. 2.
    Cartan, H. and Eilenberg, S.: Homological Algebra, Princeton University Press, 1973.Google Scholar
  3. 3.
    Connes, A.: Non-Commutative Geometry, Academic Press, New York, 1994.Google Scholar
  4. 4.
    Connes, A.: Non-commutative differential geometry, Publ. IHES 62 (1986), 257.Google Scholar
  5. 5.
    Dubois-Violette, M., Madore, J., Masson, T. and Mourad, J.: Linear connections on the quantum plane, Lett. Math. Phys. 35 (1995), 351–358.Google Scholar
  6. 6.
    Dubois-Violette, M. and Michor, P. W.: Dérivations et calcul différentiel non commutatif II. C.R. Acad. Sci. Paris Série 1 319 (1994), 927–931.Google Scholar
  7. 7.
    Dubois-Violette, M. and Michor, P. W.: Connections on central bimodules, Preprint LPTHEORSAY 94/100 and ESI-preprint 210, to appear in J. Geom. Phys. Google Scholar
  8. 8.
    Madore, J., Masson, T. and Mourad, J.: Linear connections on matrix geometries. Classical Quantum Gravity 12 (1995), 1429.Google Scholar
  9. 9.
    Mourad, J.: Linear connections in noncommutative geometry. Classical Quantum Gravity 12 (1995), 965–974.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Michel Dubois-Violette
    • 1
  • Thierry Masson
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Paris XIOrsay CedexFrance

Personalised recommendations