Letters in Mathematical Physics

, Volume 37, Issue 4, pp 385–396 | Cite as

On an alternative supermatrix reduction

  • Steven Duplij
Article

Abstract

We consider a nonstandard odd reduction of supermatrices (as compared with the standard even reduction) which arises in connection with the possible extension of manifold structure group reductions. The study was initiated by consideration of generalized noninvertible superconformal-like transformations. The features of even- and odd-reduced supermatrices are investigated together. They can be unified into some kind of ‘sandwich’ semigroups. We also define a special module over even- and odd-reduced supermatrix sets, and the generalized Cayley-Hamilton theorem is proved for them. It is shown that the odd-reduced supermatrices represent semigroup bands and Rees matrix semigroups over a unit group.

Mathematics Subject Classifications (1991)

20Mxx 81Rxx 17Axx 

Key words

semigroup ideal supersymmetry supermatrices Cayley-Hamilton theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kobayashi, S.: Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972.Google Scholar
  2. 2.
    Lott, J.: Torsion constraints in supergeometry, Comm. Math. Phys. 133 (1990), 563.Google Scholar
  3. 3.
    Duplij, S.: On semigroup nature of superconformal symmetry, J. Math. Phys. 32 (1991), 2959.Google Scholar
  4. 4.
    Duplij, S.: On N=4 super Riemann surfaces and superconformal semigroup, J. Phys. A 24 (1991), 3167.Google Scholar
  5. 5.
    Duplij, S.: Ideal structure of superconformal semigroups, University of Kaiserslautern, Preprint KL-TH-95/4, CERN-SCAN-9503193, 1995.Google Scholar
  6. 6.
    Crane, L. and Rabin, J. M.: Super Riemann surfaces: uniformization and Teichmüller theory, Comm. Math. Phys. 113 (1988), 601.Google Scholar
  7. 7.
    Giddings, S. B. and Nelson, P.: The geometry of super Riemann surfaces, Comm. Math. Phys. 116 (1988), 607.Google Scholar
  8. 8.
    Govindarajan, S., Nelson, P., and Wong, E.: Semirigid geometry, Comm. Math. Phys. 147 (1992), 253.Google Scholar
  9. 9.
    Alexandrov, M., Kontsevich, M., Schwarz, A., and Zabrodsky, O.: The geometry of the master equation and topological quantum field theory, UC Davis preprint, 1995, hep-th/9502010.Google Scholar
  10. 10.
    Rogers, A.: A global theory of supermanifolds, J. Math. Phys. 21 (1980), 1352.Google Scholar
  11. 11.
    Berezin, F. A.: Introduction to Superanalysis, D. Reidel, Dordrecht, 1987.Google Scholar
  12. 12.
    Leites, D. A.: Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1.Google Scholar
  13. 13.
    Ivashchuk, V. D.: Invertibility of elements in infinite-dimensional Grassmann-Banach algebras, Theoret. Math. Phys. 84 (1990), 13.Google Scholar
  14. 14.
    Pestov, V.: Soul expansion of G superfunctions, J. Math. Phys. 34 (1993), 3316.Google Scholar
  15. 15.
    Duplij, S.: Some abstract properties of semigroups appearing in superconformal theories, University of Kaiserslautern, Preprint KL-TH-95/11, to appear in Semigroup Forum.Google Scholar
  16. 16.
    McAlister, D. B.: Representations of semigroups by linear transformations, 1, 2, Semigroup Forum 2 (1971), 189.Google Scholar
  17. 17.
    Clifford, A. H. and Preston, G. B.: The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc., Providence, 1961.Google Scholar
  18. 18.
    Howie, J. M.: An Introduction to Semigroup Theory, Academic Press, London, 1976.Google Scholar
  19. 19.
    Manin, Y. I.: Gauge Field Theory and Complex Geometry, Springer-Verlag, New York, 1988.Google Scholar
  20. 20.
    Urrutia, L. F. and Morales, N.: The Cayley-Hamilton theorem for supermatrices, J. Phys. A 27 (1994), 1981.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Steven Duplij
    • 1
  1. 1.Physics DepartmentUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations