Current Genetics

, Volume 23, Issue 5–6, pp 375–381

Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae

  • A. Schöler
  • H. -J. Schüller
Original Articles


The ICL1 gene encoding the isocitrate lyase from Saccharomyces cerevisiae was cloned and sequenced. A reading frame of 557 amino acids showing significant similarity to isocitrate lyases from seven other species could be identified. Construction of icl1 null mutants led to growth defects on C2 carbon sources while utilization of sugars or C3 substrates remained unaffected. Using an ICL1-lacZ fusion integrated at the ICL1 locus, a more than 200-fold induction of β-galactosidase activity was observed after growth on ethanol when compared with glucose-repressed conditions. A preliminary analysis of the ICL1 upstream region identified a 364-bp fragment necessary and sufficient for this regulatory phenotype. Sequence motifs also present in the upstream regions of co-regulated genes were found within this region.

Key words

Saccharomyces cerevisiae Isocitrate lyase Gene regulation Ethanol induction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison JD, Murray WW, Rachubinski RA (1991) J Biol Chem 266:23197–23203Google Scholar
  2. Atomi H, Ueda M, Hikido H, Hishida T, Teranishi Y, Tanaka A (1990) J Biochem 107:262–266Google Scholar
  3. Barnett JA, Kornberg HL (1960) J Gen Microbiol 23:65–82Google Scholar
  4. Beeching JR, Northcote DH (1987) Plant Mol Biol 8:471–475Google Scholar
  5. Carlson M, Botstein D (1982) Cell 28:145–154Google Scholar
  6. Celenza JL, Carlson M (1986) Science 233:1175–1180Google Scholar
  7. Celenza JL, Eng FJ, Carlson M (1989) Mol Cell Biol 9:5045–5054Google Scholar
  8. Cigan AM, Donahue TF (1987) Gene 59:1–18Google Scholar
  9. Ciriacy M (1977) Mol Gen Genet 154:213–220Google Scholar
  10. Comai L, Dietrich RA, Maslyan DJ, Baden CS, Harada JJ (1989) Plant Cell 1:293–300Google Scholar
  11. Einerhand AWC, Voorn-Brouwer TM, Erdmann R, Kunau WH, Tabak HF (1991) Eur J Biochem 200:113–122Google Scholar
  12. Entian KD, Zimmermann FK (1982) J Bacteriol 151:1123–1128Google Scholar
  13. Fernandez E, Moreno F, Rodicio R (1992) Eur J Biochem 204:983–990Google Scholar
  14. Fitzgerald M, Shenk T (1981) Cell 24:251–260Google Scholar
  15. Forsburg SL, Guarente L (1988) Mol Cell Biol 8:647–654Google Scholar
  16. Gainey LDS, Connerton IF, Lewis EH, Turner G, Ballance DJ (1992) Curr Genet 21:43–47Google Scholar
  17. Gancedo JM (1992) Eur J Biochem 206:297–313Google Scholar
  18. Gietz RD, Sugino A (1988) Gene 74:527–534Google Scholar
  19. Gonzalez E (1977) J Bacteriol 129:1343–1348Google Scholar
  20. Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) J Cell Biol 108:1657–1664Google Scholar
  21. Holzer H (1976) Trends Biochem Sci 1:178–181Google Scholar
  22. Ko YH, McFadden BA (1990) Arch Biochem Biophys 278:373–380Google Scholar
  23. Ko YH, Cremo CR, McFadden BA (1992) J Biol Chem 267:91–95Google Scholar
  24. Lopez-Boado YS, Herrero P, Gascon S, Moreno F (1987) Arch Microbiol 147:231–234Google Scholar
  25. Lopez-Boado YS, Herrero P, Fernandez T, Fernandez R, Moreno F (1988a) Yeast 4:41–46Google Scholar
  26. Lopez-Boado YS, Herrero P, Fernandez T, Fernandez R, Moreno F (1988b) J Gen Microbiol 134:2499–2505Google Scholar
  27. Matsuoka M, McFadden BA (1988) J Bacteriol 170:4528–4536Google Scholar
  28. McNeil JB, Smith M (1986) J Mol Biol 187:363–378Google Scholar
  29. Mercado JJ, Vincent O, Gancedo JM (1991) FEBS Lett 291:97–100Google Scholar
  30. Myers AM, Tzagoloff A, Kinney DM, Lusty CJ (1986) Gene 45:299–310Google Scholar
  31. Neigeborn L, Carlson M (1984) Genetics 108:845–858Google Scholar
  32. Nehlin JO, Ronne H (1990) EMBO J 9:2891–2898Google Scholar
  33. Nehlin JO, Carlberg M, Ronne H (1991) EMBO J 10:3373–3377Google Scholar
  34. Osborne BI, Guarente L (1989) Proc Natl Acad Sci USA 86:4097–4101Google Scholar
  35. Rieul C, Bleicher F, Duclos B, Cortay JC, Cozzone AJ (1988) Nucleic Acids Res 16:5689Google Scholar
  36. Rogers DT, Hiller E, Mitsock L, Orr E (1988) J Biol Chem 263:6051–6057Google Scholar
  37. Russell DW, Smith M, Williamson VM, Young ET (1983) J Biol Chem 258:2674–2682Google Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  39. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  40. Sarokin L, Carlson M (1986) Mol Cell Biol 6:2324–2333Google Scholar
  41. Schüller HJ, Entian KD (1987) Mol Gen Genet 209:366–373Google Scholar
  42. Schüller HJ, Entian KD (1991) J Bacteriol 173:2045–2052Google Scholar
  43. Schüller HJ, Hahn A, Tröster F, Schütz A, Schweizer E (1992) EMBO J 11:107–114Google Scholar
  44. Simon M, Adam G, Rapatz W, Spevak W, Ruis H (1991) Mol Cell Biol 11:699–704Google Scholar
  45. Trumbly RJ (1992) Mol Microbiol 6:15–21Google Scholar
  46. Turley RB, Choe SM, Trelease RN (1990) Biochim Biophys Acta 1049:223–226Google Scholar
  47. Veenhuis M, Harder W (1991) In: Rose AH, Harrison JS (eds) The Yeasts, vol 4. Academic Press, London, pp 601–653Google Scholar
  48. Witt I, Kronau R, Holzer H (1968) Biochim Biophys Acta 118:522–537Google Scholar
  49. Zaret KS, Sherman F (1982) Cell 28:563–573Google Scholar
  50. Zimmermann FK, Kaufmann I, Rasenberger H, Haussmann P (1977) Mol Gen Genet 151:95–103Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Schöler
    • 1
  • H. -J. Schüller
    • 1
  1. 1.Institut für Mikrobiologie und BiochemieErlangenGermany

Personalised recommendations