, Volume 109, Issue 4, pp 223–230 | Cite as

Tympana, auditory thresholds, and projection areas of tympanal nerves in singing and silent grasshoppers (Insecta, Acridoidea)

  • K. Riede
  • G. Kämper
  • I. Höfler


The auditory systems of several species of singing and acoustically communicating grasshoppers, as well as of silent grasshoppers, were compared with respect to the external structure of the tympana, thresholds of the tympanal nerve response and projection areas of tympanal nerves within the metathoracic part of the ventral nerve cord. Extracellular recordings from the tympanal nerves, using suction electrodes, revealed that singing and silent grasshoppers hear within the frequency range tested, from 2 to 40 kHz. However, differences in sensitivity were observed in those silent species with tympana of modified structure. Cobalt-backfills of the tympanal nerves revealed a clearly discernible auditory neuropil in the anterior ring tract of the metathoracic ganglion in all animals. A comparison of the volumes of neuropilar areas calculated from serial sections of the entire ganglion showed a gradation: the volumes were biggest in singing species, slightly smaller in silent species with a well-developed tympanum, and smallest in the species with modified tympana. These findings support several authors who suggested that auditory organs evolved earlier than acoustic communication.


Modify Structure Serial Section Projection Area Auditory System Nerve Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam LJ, Schwartzkopff J (1967) Getrennte nervöse Repräsentation für verschiedene Tonbereiche im Protocerebrum von Locusta migratoria. Z Vergl Physiol 54:246–255Google Scholar
  2. Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363Google Scholar
  3. Bock C (1987) A quick and simple method for preparing soft insect tissues for scanning electron microscopy using Carnoy and Hexamethyldisilazane. Beitr Elektronenmikroskop Direktabb Oberfl 20:209–214Google Scholar
  4. Boyan GS (1983) Postembryonic development in the auditory system of the locust: anatomical and physiological characterisation of interneurones ascending to the brain. J Comp Physiol 151:499–513Google Scholar
  5. Boyan GS (1985) Response decrement in an auditory neurone of the locust. J Insect Physiol 31:99–107Google Scholar
  6. Breckow J, Sippel M (1985) Mechanics of the transduction of sound in the tympanal organ of adults and larvae of locusts. J Comp Physiol A 157:619–629Google Scholar
  7. Eggers F (1928) Die stiftführenden Sinnesorgane, Morphologie und Anatomie der tympanalen Sinnesapparate der Insekten. Zool Bausteine 2:1–353Google Scholar
  8. Eibl E (1976) Morphologische und neuroanatomische Untersuchungen zur Sinnesorganausstattung der proximalen Tibienabschnitte und ihrer zentralen Projektionen bei Grillen. Dissertation, MünchenGoogle Scholar
  9. Graber V (1876) Die tympanalen Sinnesorgane der Orthopteren. Wien: Denkschr Akad Wiss (Math -Nat Kl) 36:273–296Google Scholar
  10. Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc London B 243:75–94Google Scholar
  11. Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253:517–528Google Scholar
  12. Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351Google Scholar
  13. Kalmring K (1975) The afferent auditory pathway in the ventral cord of Locusta migratoria (Acrididae). II. Responses of the auditory ventral cord neurons to natural sounds. J Comp Physiol 104:143–159Google Scholar
  14. Mason JB (1968) The tympanal organ of Acridomorpha (Orthoptera). Eos 144:267–355Google Scholar
  15. Michel K, Petersen M (1982) Development of the tympanal organ in larvae of the migratory locust (Locusta migratoria). Cell Tissue Res 222:667–676Google Scholar
  16. Michelsen A (1971a) The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. Z Vergl Physiol 71:49–62Google Scholar
  17. Michelsen A (1971b) The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. Z Vergl Physiol 71:63–101Google Scholar
  18. Michelsen A (1971c) The physiology of the locust ear. III. Acoustical properties of the intact ear. Z Vergl Physiol 71:102–128Google Scholar
  19. Murphey RK, Bacon JP, Johnson SE (1985) Ectopic neurons and the organization of insect sensory systems. J Comp Physiol A 156:381–389Google Scholar
  20. Otte D (1970) A comparative study of communicative behaviour in grasshoppers. Misc Publ Mus Zool Univ Mich 141:1–167Google Scholar
  21. Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of locust jump by multimodal inhibitory interneurons. J Neurophysiol 43:257–278Google Scholar
  22. Pflüger H-J, Bräunig P, Hustert R (1988) The organisation of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc London B 321:1–26Google Scholar
  23. Rehbein HG (1972) Experimentell-anatomische Untersuchungen über den Verlauf der Tympanalfasern im Bauchmark von Feldheuschrecken, Laubheuschrecken und Grillen. Verh Dtsch Zool Ges 66:184–189Google Scholar
  24. Rehbein H (1976) Auditory neurons in the ventral cord of the locust: Morphological and functional properties. J Comp Physiol A 110:233–250Google Scholar
  25. Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296Google Scholar
  26. Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20:1–148Google Scholar
  27. Stephen RO, Bennett-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99:279–314Google Scholar
  28. Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Philos Trans R Soc London B, 297:91–123Google Scholar
  29. Yager DD, Hoy RR (1989) Audition in the praying mantis, Mantis religiosa L.: identification of an interneuron mediating ultrasonic hearing. J Comp Physiol A 165:471–493Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • K. Riede
    • 1
  • G. Kämper
    • 1
  • I. Höfler
    • 1
  1. 1.Max-Planck-Institut für Verhaltensphysiologie Abteilung HuberSeewiesenFederal Republic of Germany

Personalised recommendations