, Volume 104, Issue 6, pp 344–359 | Cite as

Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida)

  • K. Sasira Babu
  • Friedrich G. Barth


In Cupiennius salei (Ctenidae), as in other spiders, the central nervous system is divided into the supraoesophageal ganglion or brain and the suboesophageal ganglia (Fig. 1). The two masses are interconnected by oesophageal connectives. The brain gives off four pairs of optic and one pair of cheliceral nerves. From the suboesophageal ganglia arise a pair of pedipalpal, four pairs of leg, and several pairs of opisthosomal nerves (Fig. 2).

1. Cell types. In the brain a total of 50900 cells were counted, in the suboesophageal ganglia 49000. They are all monopolar cells, found in the ganglion periphery and may be classified into four types: (a) Small globuli cells (nuclear diameter 6–7 μm) forming a pair of compact masses in the protocerebrum (Fig. 10b); (b) Small and numerous cells (cell diameter 12–20 μm) with processes forming the bulk of the neuropil in the brain and suboesophageal ganglia; (c) Neurosecretory cells (cell diameter ca. 45 μm) in the brain and suboesophageal ganglia; (d) Large motor and interneurons (cell daimeter 40–112 μm), mostly in the suboesophageal ganglia (Figs. 10a and c).

2. Suboesophageal mass. The cell bodies form a sheet of one to several cell layers on the ventral side of each ganglion and are arranged in groups. Three such groups were identified as motor neurons, four as interneurons. At the dorsal, dorso-lateral, and mid-central parts of the ganglion there are no cell somata. The fibre bundles arising from them form identifiable transverse commissural pathways (Fig. 9b). They form the fibrous mass in the central part of the suboesophageal mass.

Neuropil is well-formed in association with the sensory terminations of all major nerves (Fig. 9a). As these proceed centrally they break up into five major sensory tracts forming five layers one above the other. There are six pairs of additional major longitudinal tracts arranged at different levels dorsoventrally (Fig. 8). They ascend into the brain through the oesophageal connectives and terminate mostly in the mushroom bodies and partly in the central body.

3. Protocerebrum. Fine processes of the globuli cells form the most important neuropil mass in the fibrous core, called the mushroom bodies. These consist of well developed glomeruli, hafts, and bridge which are interconnected with the optic masses of the lateral eyes and most fibre tracts from the brain and suboesophageal mass (Fig. 7). The median eye nerves form a small optic lamella and optic ganglia, connected to the central body through an optic tract. Each posterior median and posterior lateral eye nerve ends in large optic lamellae (Fig. 13a). These are connected through chiasmata to a large optic mass where fibres from globuli cells form conspicuous glomeruli. There are 10–12 large fibres (diameter 9 μm) of unknown origin on each side, terminating in the optic lambella of the posterior lateral eye.

The central body, another neuropil mass (Fig. 13b) in the protocerebrum, is well developed in Cupiennius and located transversely in its postero-dorsal region (Fig. 10d). It consists of two layers and is interconnected with optic masses of the median and lateral eyes through optic tracts. Fibre tracts from the brain and suboesophageal mass join the central body.


Central Body Optic Tract Fibre Tract Mushroom Body Optic Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babu KS (1965) Anatomy of the central nervous system of arachnids. Zool Jahrb Abt Ontog Tiere Anat 82:1–154Google Scholar
  2. Babu KS (1969) Certain histological and anatomical features of the central nervous system of a large Indian spider, Poecilotheria. Am Zool 9:113–119Google Scholar
  3. Babu KS (1973) Histology of the neurosecretory system and neurohaemal organs of the spider, Argiope aurantia (Lucas). J Morphol 141:77–97Google Scholar
  4. Babu KS (1975) Post embryonic development of the central nervous system of the spider, Argiope aurantia (Lucas). J Morphol 146:325–342Google Scholar
  5. Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam Oxford, New York pp 445–473Google Scholar
  6. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow, London, pp 112–141Google Scholar
  7. Barth FG (1982) Spiders and vibratory signals: Sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Mechanisms and ecological significance. Princeton University Press, Princeton, NJ, pp 67–122Google Scholar
  8. Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards R (eds) Biology of the integument. Vol. 1: Invertebrates. Springer, Berlin, Heidelberg, New York, pp 554–582Google Scholar
  9. Barth FG, Seyfarth EA (1979) Cupiennius salei Keys (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263Google Scholar
  10. Bowermann RF, Burrows M (1980) The morphology and physiology of some walking leg motor neurons in a scorpion. J Comp Physiol 140:31–42Google Scholar
  11. Brüssel A (1983) Somatotopische Organisation der Beinafferenzen bei Cupiennius salei Keyserling (Araneae). Diplomarbeit im Fachbereich Biologie-Zoologie der Johann Wolfgang Goethe-Universität, Frankfurt am MainGoogle Scholar
  12. Bullock TH, Horridge A (1965) Structure and function in the nervous systems of invertebrates. W.H. Freeman, San FranciscoGoogle Scholar
  13. Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145:447–457Google Scholar
  14. Eakin RM, Brandenburger JL (1971) Fine structure of the eyes of jumping spiders. J Ultrastruct Res 37:618–663Google Scholar
  15. Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee Apis mellifera. Physiol Ent 5:343–358Google Scholar
  16. Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tissue Res 229:1–22Google Scholar
  17. Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tissue Res 176:285–308Google Scholar
  18. Firstman B (1954) The central nervous system, musculature and segmentation of the cephalothorax of a tarantula (Eurypelma californicum). Microent 19:14–22Google Scholar
  19. Foelix RF (1982) Biology of spiders. Harvard University Press, Cambridge, MA, LondonGoogle Scholar
  20. Foelix RF, Müller-Vorholt G, Jung H (1980) Organization of sensory leg nerves in the spider Zygiella x-notata (Clerck) (Araneae, Araneidae). Bull Br Arachnol Soc 5:20–28Google Scholar
  21. Gerhardt U, Kaestner A (1937) Araneae. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, De Gruyter, Berlin, pp 394–427Google Scholar
  22. Goll W (1967) Strukturuntersuchungen am Gehirn von Formica. Z Morphol Ökol Tiere 59:143–210Google Scholar
  23. Goodmann LJ, Patterson JA, Mobbs PG (1975) The projection of ocellar neurons within the brain of the locust, Schistocerca gregaria. Cell Tissue Res 157:467–492Google Scholar
  24. Hanström B (1921) Über die Histologie und Vergleichende Anatomie der Sehganglien and Globuli der Araneen. Kgl Svenska vet Akael Handl 61:1–39Google Scholar
  25. Hanström B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere. Springer, Berlin, Heidelberg, Newyork, pp 392–407Google Scholar
  26. Hanström B (1935) Fortgesetzte Untersuchungen über das Araneengehirn. Zool Jahrb Abt Ontog Tiere Anat 59:455–478Google Scholar
  27. Hilton WA (1912) A preliminary study of the central nervous system of spiders. J Ent Zool 4:832–836Google Scholar
  28. Homann H (1928) Beiträge zur Physiologie der Spinnenaugen. I. Untersuchungsmethoden. II. Das Sehvermögen. Z Vergl Physiol 7:201–269Google Scholar
  29. Homann H (1971) Die Augen der Araneae. Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Z Morphol Tiere 69:201–272Google Scholar
  30. Homberg U (1981) Ableitungen und Lucifer-Yellow Markierungen von Neuronen des Tractus olfactorius-globularis im Bienengehirn. Verh Dt Zool Ges 74:176Google Scholar
  31. Holye G (1977) Identified neurons and behavior of arthropods. Plenum Press, New YorkGoogle Scholar
  32. Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132Google Scholar
  33. Huber F (1967) Central control of movements and behavior of invertebrates. In: Wiersma CAG (ed) Invertebrate nervous systems. The University of Chicago, pp 333–351Google Scholar
  34. Huber F (1983) Implications of insect neuroethology for studies on vertebrates. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, vol 56, pp 91–138Google Scholar
  35. Hustert R, Pflüger JH, Bräunig P (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. Cell Tissue Res 216:97–111Google Scholar
  36. Kandel ER (1976) Cellular basis of behavior. W.H. Freeman, San FranciscoGoogle Scholar
  37. Lachmuth U, Grasshoff M, Barth FG (1984) Taxonomische Revision der Gattung Cupiennius Simon 1891 (Arachnida: Araneae) Senckenbergiana biologica (in press)Google Scholar
  38. Land MF (1969) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493Google Scholar
  39. Land MF (1972) Mechanisms of orientation and pattern recognition by jumping spiders. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin, Heidelberg, New York, pp 231–247Google Scholar
  40. Legendre R (1959) Contribution à l'étude du système nerveux des aranéides. Ann Sci Nat (Zool) 1:339–473Google Scholar
  41. Meir F (1967) Beiträge zur Kenntnis der postembryonalen Entwicklung der Spinnen Araneida, Labidognatha, unter besonderer Berücksichtigung der Histogenese des Zentralnervensystems. Rev Suisse Zool 74:1–127Google Scholar
  42. Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jahrb Abt Syst Oekol Geogr Tiere 91:1–90Google Scholar
  43. Milde J (1981) Graded potentials and action potentials in the large ocellar interneurons of the bee. J Comp Physiol 143:427–434Google Scholar
  44. Millot J (1949) Chelicerates. In: Grassé PP (ed) Traîté de Zoologie, Masson, Paris, vol 6, pp 263–743Google Scholar
  45. Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Phil Trans R Soc London B 298:309–354Google Scholar
  46. O'Shea M, Williams JLD (1974) Anatomy and output connections of the lobular giant movement detector neuron (LGMD) of the locust. J Comp Physiol 41:257–266Google Scholar
  47. Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132Google Scholar
  48. Palmgren A (1948) A rapid method for selective silver staining of nerve fibers and nerve endings in mounted paraffin sections. Act Zool 29:377–392Google Scholar
  49. Pantin CFA (1964) Notes of microscopic technique for zoologists. Cambridge University Press, LondonGoogle Scholar
  50. Römer H (1983) Tonotopic organization of the auditory neuropil in the bushcricket Tettigonia viridissima. Nature 306:60–62Google Scholar
  51. Saint-Remy G (1890) Contribution à l'étude du cerveau chez les arthropodes tracheates. Arch Zool Exp 5:1–274Google Scholar
  52. Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domestica. Cell Tissue Res 230:573–586Google Scholar
  53. Seyfarth EA (1978) Mechanoreceptors and proprioceptive reflexes: Lyriform organs in the spider leg. Symp Zool Soc Lond 42:457–467Google Scholar
  54. Seyfarth EA, Pflüger HJ (1984) Proprioceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiology (in press)Google Scholar
  55. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  56. Strausfeld NJ (1980) The Golgi method: Its application to the insect nervous system and the phenomenon of stochastic impregnation. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Insect nervous system. Springer, Berlin, Heidelberg, New York, pp. 132–190Google Scholar
  57. Streble H (1966) Untersuchungen über das hormonale System der Spinnentiere (Chelicerata) unter besonderer Berücksichtigung des “Endokrinen Gewebes” der Spinnen (Araneae). Zool Jahrb Allg Zool Physiol Tiere 72:157–234Google Scholar
  58. Trujillo-Cenóz (1965) Some aspects of the structural organization of the arthropod eye. Cold Spring Harbor Symp Quant Biol 30:371–382Google Scholar
  59. Trujillo-Cenóz O, Melamed J (1967) The fine structure of the visual system of Lycosa (Araneae: Lycosidae). 2. Primary visual centres. Z Zellforsch Mikrosk Anat 76:377–388Google Scholar
  60. Van der Kloot WG, Williams CM (1954) Cocoon construction by the Cecropia silkworm. III. The alteration of spinning behavior by chemical and surgical techniques. Behavior 6:233–255Google Scholar
  61. Wadepuhl M (1983) Control of grasshopper singing behavior by the brain: Responses to electrical stimulation. Z Tierpsychol 63:173–200Google Scholar
  62. Wadepuhl M, Huber F (1979) Elicitation of singing and courtship movements by electrical stimulation of the brain of the grasshopper. Naturwiss 66:320Google Scholar
  63. Wheeler WM (1910) Ants, their structure, development and behavior. Columbia University Press, New YorkGoogle Scholar
  64. Witt PN (1969) Behavioral consequences of Laser lesions in the central nervous system of Araneus diadematus CL. Am Zoologist 9:121–131Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • K. Sasira Babu
    • 1
  • Friedrich G. Barth
    • 1
  1. 1.Gruppe SinnesphysiologieZoologisches Institut der Johann Wolfgang Goethe-UniversitätFrankfurt am Main 1Federal Republic of Germany

Personalised recommendations