, Volume 104, Issue 1, pp 42–66 | Cite as

Histology and regeneration of the radula of Pomacea bridgesi (Gastropoda, Prosobranchia)

  • B. Mischor
  • K. Märkel


Histology, physiological regeneration, and degradation of the taenioglossan prosobranch radula and its concomitant epithelia were studied by light and electron microscopy (TEM, SEM), electron microprobe analysis, and autoradiography. Taenioglossa have seven multicellular odontoblastic cushions which produce the tooth matrix by apocrine secretion; many long microvilli are also incorporated. In contrast to pulmonates, the odontoblasts of prosobranchs are capable of division, and their mitoses contribute to the expansion of the cushions, but presumably also to the displacement of degenerating odontoblasts. The seven cushions are isolated from each other by separation cells. The radular membrane is produced from microvilli of membranoblasts and a substance secreted at the base of microvilli.

Strands of the supraradular epithelium subsequently move in between the teeth and finally enclose them completely. They effect the hardening and mineralization of the teeth. The strands move together with the radula towards the anterior and are extruded at the opening of the radular sheath; their degeneration, however, has already started in the middle section of the sheath. Epithelial cells are produced by two completely separated mitotic centres which lie dorsolaterally at the end of the sheath.

In the subradular epithelium, mitotic activity is scattered over the posterior half of the sheath but is not found in the region where the supramedian radula tensor muscle is inserted. The epithelial cells move forward, but at a much lower rate than the radula. At the opening of the sheath the subradular membrane is generated, while cells of the subradular epithelium lying between the lamellae of the subradular membrane are extruded.

The subradular membrane is limited to the functional part of the radula. It is situated on the distal radular epithelium, which is obviously not a continuation of the subradular epithelium. In test animals treated with tritiated thymidine, there is a very strong stationary centre of labeled cells at the beginning of the epithelium, but so far no mitoses have been found in this centre and the labeled cells do not move on continually. In the middle of the distal epithelium mitoses do occur, and the labeled cells permit the assumption that these cells do not migrate at all to the anterior end. At least in Prosobranchia, the distal radular epithelium does not transport the radula to its degradation zone. The transport mechanism for the radula is still unknown.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertsch R (1976) Intraspecific and ontogenetic radular variation in opisthobranch systematics. Syst Zool 25:117–122Google Scholar
  2. Bloch J (1896) Die embryonale Entwicklung der Radula von Paludina vivpara. Jen Z Naturw 30:350–392 (I–III pls)Google Scholar
  3. Blume W (1957) Eine bis heute unbekannte Unterart von Pomacea bridgesi Rve. Opuscula Zoologica 1:1–2Google Scholar
  4. Carefoot TH (1965) Magnetite in the radula of the Polyplacophora. Proc Malac Soc Lond 36:203–212Google Scholar
  5. Carriker MR (1943) On the structure and function of the proboscis in the common oyster drill, Urosalpinx cinerea Say. J Morphol 73:441–506Google Scholar
  6. Demian ES (1964) The anatomy of the alimentary system of Marisa cornuarietis (L.). Göteborgs K Vetensk Vitterh Samh Handl, Ser B 9:1–75Google Scholar
  7. Demian ES, Yousif F (1973) Embryonic development and organogenesis in the snail Marisa cornuarietis. II. Development of the alimentary system. Malacologia 12:151–174Google Scholar
  8. Ducros C (1967) Contribution à l'étude du tannage de la radula chez les gastéropodes. Ann Histochim 12:243–272Google Scholar
  9. Eigenbrodt H (1941) Untersuchungen über die Funktion der Radula einiger Schnecken. Z Morph Ökol Tiere 37:735–791Google Scholar
  10. Fretter V (1965) Functional studies of the anatomy of some neritid prosobranchs. J Zool Lond 147:46–74Google Scholar
  11. Gabe M (1952) Contribution à l'étude histologique de l'appareil digestif des Pterotracheidae. Cellule 54:365–396 (I–III pls)Google Scholar
  12. Gabe M (1966) Contribution à l'histologie de Firoloida desmaresti Lesueur. Vie Milieu 17:845–959Google Scholar
  13. Gabe M, Prenant M (1949a) Contribution à l'étude cytologique et histochimique du tube digestif des Polyplacophores. Arch Biol 60:39–77 (I, II pls)Google Scholar
  14. Gabe M, Prenant M (1949b) Particularités histochimiques de la gaine radulaire chez l'Escargot (Helix aspersa Müll.). CR Acad Sci Paris 229:1269–1270Google Scholar
  15. Gabe M, Prenant M (1950a) Recherches sur la gaine radulaire des mollusques. I. La gaine radulaire de Dentalium entale Deshayes. Arch Zool Exp Gén 86:487–498 (XV pl)Google Scholar
  16. Gabe M, Prenant M (1950b) Recherches sur la gaine des mollusques. II. Données histologiques sur l'appareil radulaire des Hétéropodes. Bull Soc Zool Fr 75:176–184Google Scholar
  17. Gabe M, Prenant M (1951a) Particularités histochimiques de la gaine radulaire chez les Prosobranches Diotocardes. Bull Soc Zool Fr 76:305Google Scholar
  18. Gabe M, Prenant M (1951b) Recherches sur la gaine radulaire des mollusques. III. L'appareil radulaire des Ptéropodes Thécosomes. Bull Soc Zool Fr 76:315–323Google Scholar
  19. Gabe M, Prenant M (1952a) Recherches sur la gaine des mollusques. IV. L'appareil radulaire d'Acteon tornatilis L. Arch Zool Exp Gén 89:15–25Google Scholar
  20. Gabe M, Prenant M (1952b) Recherches sur la gaine radulaire des mollusques. V. L'appareil radulaire de quelques Opisthobranches Céphalaspides. Bull Lab Mar Dinard 37:13–26 (1, II pls)Google Scholar
  21. Gabe M, Prenant M (1957) Recherches sur la gaine radulaire des mollusques. VI. L'appareil radulaire de quelques Céphalopodes. Ann Sci Nat Zool, Ser II 19:587–602 (I–III pls)Google Scholar
  22. Gabe M, Prenant M (1958) Particularités histochimiques de l'appareil radulaire chez quelques mollusques. Ann Histochim 3:95–112Google Scholar
  23. Gabe M, Prenant M (1962) Résultats de l'histochimie des polysaccharides: Invertébrés. In: Graumann W, Neumann K (eds) Handbuch der Histochemie, Vol II, part 1: Polysaccharide. Fischer, StuttgartGoogle Scholar
  24. Gaillard JM (1953) Sur quelques points d'anatomie et la biologie de Gibbula umbilicalis Da Costa. Bull Lab Mar Dinard 39:1–21Google Scholar
  25. Geyer D (1927) Unsere Land- und Süßwasser-Mollusken. KG Lutz, StuttgartGoogle Scholar
  26. Götting K-J (1977) Radula und Kiefer der Pulmonata als artdiagnostische Merkmale — dargestellt am Beispiel zweier Helix-Arten. Arch Moll 108:163–175Google Scholar
  27. Graham A (1973) The anatomical basis of function of prosobranch and amphineuran molluscs. J Zool Lond 169:317–348Google Scholar
  28. Hoffmann H (1932) Die Radulabildung bei Lymnaea stagnalis. Jen Z Naturw 67:535–550Google Scholar
  29. Honegger T (1974) Die Embryogenese von Ampullarius. Zool Jb Anat 93:1–76Google Scholar
  30. Isarankura K, Runham NW (1968) Studies on the replacement of the gastropod radula. Malacologia 7:71–91Google Scholar
  31. Kerth K, Krause G (1969) Untersuchungen mittels Röntgenbestrahlung über den Radula-Ersatz der Nacktschnecke Limax flavus L. Roux' Arch 164:48–82Google Scholar
  32. Kerth K (1971) Radula-Ersatz und Zähnchenmuster der Weinbergschnecke im Winterhalbjahr. Zool Jb Anat 88:47–62Google Scholar
  33. Kerth K (1973) Radulaersatz und Zellproliferation in der röntgenbestrahlten Radulascheide der Nacktschnecke Limax flavus L. Ergebnisse zur Arbeitsteilung der Scheidengewebe. Roux' Arch 172:317–348Google Scholar
  34. Kerth K (1976) Licht- und elektronenoptische Befunde zum Radulatransport bei der Lungenschnecke Limax flavus L. Zoomorphologie 83:271–281Google Scholar
  35. Kerth K, Hänsch D (1977) Zellmuster und Wachstum des Odontoblastengürtels der Weinbergschnecke Helix pomatia. Zool Jb Anat 98:14–28Google Scholar
  36. Kerth K, Reder I, Zimmermann R (1981) Der Radulaabbau beim Embryo der Sumpfdeckelschnecke Viviparus fasciatus Müll. Zool Jb Anat 106:104–111Google Scholar
  37. Lowenstam HA (1962) Goethite in the radular teeth of recent marine gastropods. Science 137:279–280Google Scholar
  38. Lutfy RG, Demian ES (1964) The histology of the radula and the radular sac of Marisa cornuarietis (L.). Ain Shams Sci Bull 10:97–118Google Scholar
  39. Lutfy RG, Demian ES (1967) The histology of the alimentary system of Marisa cornuarietis. Malacologia 5:375–422Google Scholar
  40. Märkel K (1957) Bau und Funktion der Pulmonaten-Radula. Z Wiss Zool 160:213–289Google Scholar
  41. Märkel K (1965) Modell-Untersuchungen zur Klärung der Arbeitsweise der Gastropodenradula. Verh Dtsch Zool Ges Kiel 1964:232–243. Fischer, Leipzig 1965Google Scholar
  42. Märkel K (1969) Wie erfolgt der laufende Zahnwechsel bei Schnecken und Knorpelfischen? Umschau 69:477–480Google Scholar
  43. Mischor B (1977) Bildung und Abbau der Radula von Pomacea bridgesi diffusa Blume. Verh Dtsch Zool Ges Erlangen 1977:282. Fischer, Stuttgart 1977Google Scholar
  44. Nisbet RH (1973) The role of the buccal mass in the trochid. Proc Malac Soc Lond 40:435–468Google Scholar
  45. Peters W (1972) Occurence of chitin in Mollusca. Comp Biochem Physiol 41B:541–550Google Scholar
  46. Peters W (1978) Degradation of the radula in the snails Biomphalaria glabrata Say and Limnaea stagnalis L. Cell Tiss Res 193:283–295Google Scholar
  47. Peters W (1979) Basal bodies in the odontoblasts of the limpet, Patella coerulea L. Cell Tiss Res 202:295–301Google Scholar
  48. Prenant M (1925) Sur la permanence des odontoblastes de la radula. Bull Soc Zool Fr 50:164–167Google Scholar
  49. Prenant M (1926) Sur quelques problemes histologiques relatifs à la radula. Bull Soc Zool Fr 51:492–501Google Scholar
  50. Prenant M (1928) Quelques aspects histologiques du métabolisme du fer chez les chitons. Arch Anat Microscop Morphol Exptl 24:1–7 (I pl)Google Scholar
  51. Pruvot-Fol A (1926) Le bulbe buccal et la symétrie des mollusques. I. La radula. Arch Zool Exp Gén 65:209–343 (IV–VII pls)Google Scholar
  52. Richter G (1961) Die Radula der Atlantiden und ihre Bedeutung für die Systematik und Evolution der Familie. Z Morph Ökol Tiere 50:163–238Google Scholar
  53. Richter G (1962) Die Schnecken „zunge“ als Werkzeug. Natur Mus 92:391–406Google Scholar
  54. Rössler R (1885) Die Bildung der Radula bei den cephalophoren Mollusken. Z Wiss Zool 41:447–482 (XXIV, XXV pls)Google Scholar
  55. Rottmann G (1901) Über die Embryonalentwicklung der Radula bei den Mollusken. Z Wiss Zool 70:236–262 (XI, XII pls)Google Scholar
  56. Rücker S (1883) Über die Bildung der Radula bei Helix pomatia. 22. Ber Oberhess Ges Natur- und Heilkunde Gießen, 209–229 (III pl)Google Scholar
  57. Runham NW (1961) The histochemistry of the radula of Patella vulgata. Quart J Micr Sci 102:371–380Google Scholar
  58. Runham NW (1963a) A study of the replacement mechanism of the pulmonate radula. Quart J Micr Sci 104:271–277Google Scholar
  59. Runham NW (1963b) The histochemistry of the radulas of Acanthochitona communis, Lymnaea stagnalis, Helix pomatia, Scaphander lignarius and Archidoris pseudoargus. Ann Histochim 8:433–442Google Scholar
  60. Runham NW (1975) Alimentary canal. In: Fretter V, Peake J (eds) Pulmonates, Vol. 1. Academic Press, London New York San Francisco, pp 53–104Google Scholar
  61. Runham NW, Thornton PR, Shaw DA, Wayte RC (1969) The mineralization and hardness of the radular teeth of the limpet Patella vulgata L. Z Zellforsch 99:608–626Google Scholar
  62. Schaffer J (1930) Die Stützgewebe. In: Möllendorf W von (ed) Handbuch der Mikroskopischen Anatomie des Menschen, Vol. 2, part 1. Springer, Berlin, pp 1–390Google Scholar
  63. Sollas BJ (1907) The molluscan radula: its chemical composition and some points in its development. Quart J Micr Sci 51:115–136 (pl 9)Google Scholar
  64. Spek J (1921) Beiträge zur Kenntnis der chemischen Zusammensetzung und Entwicklung der Radula der Gastropoden. Z Wiss Zool 118:313–363 (V, VI pls)Google Scholar
  65. Spelter J (1928) Studien zur Anatomie und systematischen Stellung der Rhipidoglosse Clypidina notata L. Jen Z Naturw 63:277–368 (7–11 pls)Google Scholar
  66. Starmühlner F (1952) Zur Anatomie, Histologie und Biologie einheimischer Prosobranchier. Österr Zool Z 3:546–590Google Scholar
  67. Thiem H (1917) Beiträge zur Anatomie und Phylogenie der Docoglossen. I. Zur Anatomie von Helcioniscus ardosiaeus Hombron et Jacquinot. Jen Z Naturw 54:333–404 (23 pl)Google Scholar
  68. Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri. J Ultrastruct Res 17:1–13Google Scholar
  69. Troschel FH (1856–1863) Das Gebiß der Schnecken zur Begründung einer natürlichen Classification, Vol. 1. Nicolaische Verlagsbuchhandlung, BerlinGoogle Scholar
  70. Weber H (1927) Der Darm von Dolium galea L., eine vergleichend anatomische Untersuchung unter besonderer Berücksichtigung der Tritonium-Arten. Z Morph Ökol Tiere 8:663–804Google Scholar
  71. Wiesel R, Peters W (1978) Licht- und elektronenmikroskopische Untersuchungen am Radulakomplex und zur Radulabbildung von Biomphalaria glabrata. Zoomorphologie 89:73–92Google Scholar
  72. Willcox MA (1898) Zur Anatomie von Acmae fragilis. Jen Z Naturw 32:411–456 (17–19 pls)Google Scholar
  73. Ziegenhorn A, Thiem H (1925) Beiträge zur Systematik und Anatomie der Fissurelliden. Jen Z Naturw 62:1–78Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • B. Mischor
    • 1
  • K. Märkel
    • 1
  1. 1.Lehrstuhl für Spezielle Zoologie, (Arbeitsgruppe Funktionelle Morphologie)der Ruhr-UniversitätBochum 1Federal Republic of Germany

Personalised recommendations