Current Genetics

, Volume 28, Issue 1, pp 71–79 | Cite as

Multiple roles of the cellulase CBHI in enhancing production of fusion antibodies by the filamentous fungus Trichoderma reesei

  • Eini Nyyssönen
  • Sirkka Keränen
Original Paper

Abstract

The production of Fab antibody fragments in Trichoderma reesei can be increased over 50-fold by fusing the core-linker region of the T. reesei cellulase CBHI (cellobiohydrolase I) to the heavy Fd chain (Nyyssönen et al. 1993). This beneficial role of CBHI in antibody production has now been studied further by comparisons of T. reesei strains producing the light chain only, Fab or CBHI-Fab all of which exhibited identical light chain integration. The N-terminal fusion of CBHI to the heavy Fd chain not only aided secretion, as expected, but also increased the level of mRNA encoding the CBHI-heavy Fd chain, either by stabilizing the messenger or by enhancing transcription. The CBHI part appeared to facilitate secretion at least by aiding the passage through the endoplasmic reticulum, since processing of the signal peptide of the antibody chains seemed to be most efficient in the strain producing CBHI-Fab in contrast to the strains producing light chain or Fab fragment. Interestingly, CBHI core-linker protein, originating from the CBHI-heavy Fd chain, was found in large amounts in the culture medium. The cleavage resulting in this tailless CBHI occurred inside the cell. This suggests that, by omitting the heterologous tail, the secretion of the resulting CBHI core-linker protein is enhanced to a level comparable with secretion of the extracellular T. reesei proteins.

Key words

Antibody Rate-limiting steps Trichoderma reesei Filamentous fungi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M-L, Bamford DH, Korhola M (1991) Eur J Biochem 200:643–649Google Scholar
  2. Berka RMF, Bayliss T, Bloebaum P, Cullen D, Dunn-Coleman NS, Kodama KH, Hayenga KJ, Hitzeman RA, Lamsa MH, Przetak MM, Rey MW, Wilson LJ, Ward M (1991) In: Kelly JW, Baldwin TO (eds) Applications of enzyme biotechnology. Plenum Press, New York, pp 273–292Google Scholar
  3. Bole DG, Hendershot LM, Kearney JF (1986) J Cell Biol 102: 1558–1566Google Scholar
  4. Calmels TPG, Martin F, Durand H, Tiraby G (1991) J Biotechnology 17:51–66Google Scholar
  5. Carrez D, Janssens W, Degrave P, van den Hondel CAMJJ, Kinghorn JR, Fiers W, Contreras R (1990) Gene 94:147–154Google Scholar
  6. Carter P, Kelley RF, Rodrigues ML, Snedecor B, Covarrubias M, Velligan MD, Wong WLT, Rowland AM, Kotts CE, Carver ME, Yang M, Bourell JH, Shepard HM, Henner D (1992) Bio/Technology 10:163–167Google Scholar
  7. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18:5294–5299Google Scholar
  8. Dul JL, Argon Y (1990) Proc Natl Acad Sci USA 87:8135–8139Google Scholar
  9. Durand H, Clanet M, Tiraby G (1988) Enzyme Microb Technol 10:341–345Google Scholar
  10. Grizali M, Brown Jr RD (1979) Adv Chem Serol 181:237–260Google Scholar
  11. Gwynne DI, Buxton FP, Williams SA, Garven S, Davies RW (1987) Bio/Technol 5:713–719Google Scholar
  12. Harkki A, Uusitalo J, Bailey M, Penttilä M, Knowles JKC (1989) Bio/Technol 7:596–603Google Scholar
  13. Hartingsveldt W van, van Zeijl CMJ, Veenstra AE, van den Berg JA, Pouwels PH, van Gorcom RFM, van den Hondel CAMJJ (1991) In: Proc 6th Int Symp on the Genetics of Industrial Microorganisms. Strasbourg, France, pp 107–116Google Scholar
  14. Hasemann CA, Capra JD (1990) Proc Natl Acad Sci USA 87: 3942–3946Google Scholar
  15. Hiatt A, Cafferkey R, Bowdish K (1989) Nature 342:76–78Google Scholar
  16. Horwitz AH, Chang CP, Better M, Hellstrom KE, Robinson RR (1988) Proc Natl Acad Sci USA 85:8678–8682Google Scholar
  17. IUPAC (International Union of Pure and Applied Chemistry) (1987) Pure and Appl Chem 59:257–268Google Scholar
  18. Kaartinen M, Solin M-L, Mäkelä O (1989) EMBO J 8:1743–1748Google Scholar
  19. Kaartinen M, Griffiths GM, Markham AF, Milstein C (1983) Nature 304:320–324Google Scholar
  20. Kassenbrock K, Kelly RB (1989) EMBO J 8:1461–1467Google Scholar
  21. Knappik A, Krebber C, Plückthun A (1993) Bio/Technol 11:77–83Google Scholar
  22. Lippincott-Schwartz J, Bonifacino JS, Yuan LC, Klausner RD (1988) Cell 54:209–220Google Scholar
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  24. Montenecourt BS, Eveleigh DE (1979) Adv Chem Serol 181:289–301Google Scholar
  25. Nakari T, Alatalo E, Penttilä M (1993) Gene 136:313–318Google Scholar
  26. Nyyssönen E, Penttilä M, Harkki A, Saloheimo A, Knowles JKC, Keränen S (1993) Bio/Technol 11:591–595Google Scholar
  27. Page MJ, Sydenham MA (1991) Bio/Technol 9:64–68Google Scholar
  28. Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J (1986) Gene 45:253–263Google Scholar
  29. Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RDM, Pouwels PH, van den Hondel CAMJJ (1990) Gene 93:101–109Google Scholar
  30. Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CMJJ (1991) J Biotechnol 17:19–34Google Scholar
  31. Raeder U, Broda P (1985) Lett Appl Microbiol 1:17–20Google Scholar
  32. Saloheimo M, Niku-Paavola M-L (1991) Bio/Technol 9:987–990Google Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  34. Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Bio/Technol 1:691–696Google Scholar
  35. Skerra A, Plückthun A (1991) Protein Eng 4:971–979Google Scholar
  36. Tartakoff A, Vassalli P (1979) J Cell Biol 83:284–299Google Scholar
  37. Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J (1987) Gene 51:43–52Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Eini Nyyssönen
    • 1
  • Sirkka Keränen
    • 1
  1. 1.VTT Biotechnology and Food ResearchFinland

Personalised recommendations