Physics and Chemistry of Minerals

, Volume 10, Issue 4, pp 149–165 | Cite as

A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz

  • John A. Weil


A comprehensive review (ca. 230 references) is presented of the present (1983) state of knowledge of paramagnetic defects in crystalline quartz, as derived from electron paramagnetic resonance spectroscopy and related techniques. An auxiliary description of relevant concepts in solid state electron paramagnetic resonance (EPR), suitable for the non-specialist, is included. The centres described include those arising from impurity ions (Al, H, Cu, Ag, Ge, P, Ti, Fe) as well as those (E′) associated with oxygen ions missing in the quartz structure. Emphasis is placed on the structural information derivable from EPR. A brief survey of the present state of understanding of the optical bands caused by the defects is also given.


Quartz Electron Paramagnetic Resonance State Electron Structural Information Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon, OxfordGoogle Scholar
  2. Alonso PJ, Halliburton LE, Kohnke EE, Bossoli RB (1983) X-ray-induced luminescence in crystalline SiO2. J Appl Phys 54:5369–5375Google Scholar
  3. Amanis IK, Kliava JG (1977a) Modeles des centres paramagnetiques formes par les atomes de cuivre et d'argent dans le quartz. Phys Status Solidi A 41:385–392Google Scholar
  4. Amanis IK, Kliava JG (1977b) Super ultrafine structure of epr spectra of copper (Cu0) and silver (Ag0) centers in alpha-quartz. Fiz Khim Stekloobrazuyushchikh Sist 5:122–133 (Russ)Google Scholar
  5. Amanis IK, Kliava JG, Purans JJ, Truhin AN (1975) EPR of copper atoms in alpha-quartz. Phys Status Solidi B 31:K165-K167Google Scholar
  6. Anderson JH, Koth W (1959) Short-lived centers in irradiated germanium-doped quartz. Bull Am Phys Soc 4:285Google Scholar
  7. Anderson JH, Weil JA (1959) Paramagnetic resonance absorption of color centers in germanium-doped quartz. J Chem Phys 31:427–434Google Scholar
  8. Anderson JH, Feigl FJ, Schlesinger M (1974) The effects of heating on color centers in germanium-doped quartz. J Phys Chem Solids 35:1425–1428Google Scholar
  9. Arends J, Dekker AJ, Perdok WG (1963) Color centers in quartz produced by crushing. Phys Status Solidi 3:2275–2279Google Scholar
  10. Arnold GW (1965) Defect structure of crystalline quartz. Phys Rev A 139:1234–1239Google Scholar
  11. Atkins PW, Symons MCR (1967) The Structure of Inorganic Radicals. Elsevier, AmsterdamGoogle Scholar
  12. Augustine F, Hale DR (1958) Effect of aluminum and germanium on the spectral absorption of certain types of quartz growth. J Chem Phys 29:685–686Google Scholar
  13. Baker JM, Robinson PT (1983) EPR of a new defect in natural quartz: possibly O2. Solid State Commun 48:551–554Google Scholar
  14. Balitskii VS, Samoilovich MI (1975) EPR of gallium(4+) ions in irradiated synthetic quartz. Fiz Issled Kvartsa 27–31, 62–5 (Russ)Google Scholar
  15. Balitskii VS, Samoilovich MI, Tsinober LI, Zubkova EI (1969) Some characteristics of the occurrence of germanium in quartz crystals. Geochem Int 6:322–328 (Engl)Google Scholar
  16. Barker PR (1975) Hyperfine parameters of the Al centre in smoky quartz. J Phys C: Solid State Phys 8:L412-L414Google Scholar
  17. Barry TI, McNamara P, Moore WJ (1965) Paramagnetic resonance and optical properties of amethyst. J Chem Phys 42:2599–2606Google Scholar
  18. Barry TI, Moore WJ (1964) Amethyst: optical properties and paramagnetic resonance. Science 144:289–290Google Scholar
  19. Batrak EN (1958) A model for the color and luminescence centers in quartz. Sov Phys Crystallogr 3:633–634 (Engl Transl)Google Scholar
  20. Becker W, Lehmann G (1980) Anomalous hyperfine splitting of 57Fe in alpha-quartz. Solid State Commun 35:367–369Google Scholar
  21. Bennett AJ, Roth LM (1971) Electronic structure of defect centers in SiO2. J Phys Chem Solids 32:1251–1261Google Scholar
  22. Bieri A, Kneubühl FK (1965) Group theory of paramagnetic resonance: a comparison. Phys Condens Matter 4:230–246Google Scholar
  23. Bossoli RB, Halliburton LE (1983) 27Al hyperfine and quadrupole interactions for the [AlO4]0 center in quartz. To be publishedGoogle Scholar
  24. Bossoli RB, Jani MG, Halliburton LE (1982) Radiation-induced E″ centers in crystalline SiO2. Solid State Commun 44:213–217Google Scholar
  25. Bozanic DA, Mergerian D, Minarik RW (1968) Electron spin-echo measurements of E′1 centers in crystalline quartz. Phys Rev Lett 21:541–542Google Scholar
  26. Brewer JH (1981a) Muonium in quartz. Hyperfine Interact 8:375–380Google Scholar
  27. Brewer JH (1981b) Muonium hyperfine matrix in quartz. Hyperfine Interact 8:405–408Google Scholar
  28. Brice JC (1980) The lattice constants of alpha-quartz. J Mater Sci 15:161–167Google Scholar
  29. Brik AB, Matyash IV (1983) Spin-lattice relaxation of oxygen(1-) (aluminum) centers in quartz. Ukr Fiz Zh (Russ Ed) 28:141–142Google Scholar
  30. Brik AB, Matyash IV, Fedotov YuV (1977) ENDOR on “forbidden” transitions. Ti3+(Li) centers in quartz. Sov Phys Solid State 19:40–43 (Engl Transl)Google Scholar
  31. Brik AB, Matyash IV, Litovchenko AS, Samoilovich MI (1980) Electric field effect on paramagnetic aluminum-oxygen(-1) centres in quartz. Sov Phys Solid State 22:3161–3163 (Russ)Google Scholar
  32. Brower KL (1979) Electron paramagnetic resonance of aluminum E′1 centres in vitreous silica. Phys Rev B 20:1799–1811Google Scholar
  33. Brown CS, Thomas LA (1960) The effect of impurities on the growth of synthetic quartz. J Phys Chem Solids 13:337–343Google Scholar
  34. Car R, Pantelides ST (1983) Deep centers with large lattice distortions in semiconductors and SiO2. Bull Am Phys Soc 28:288–289Google Scholar
  35. Castle JG Jr, Feldman DW (1965) Resonance modes at defects in crystalline quartz. Phys Rev 137:A671-A673Google Scholar
  36. Castle JG Jr, Feldman DW, Klemens PG, Weeks RA (1963) Electron spin-lattice relaxation at defect sites; E′ centers in synthetic quartz at 3 kilo-oersteds. Phys Rev 130:577–588Google Scholar
  37. Chakraborty D, Lehmann G (1976) Distribution of OH in synthetic and natural quartz crystals. J Solid State Chem 17:305–311Google Scholar
  38. Chentsova LG, Tsinober LI, Samoilovich MI (1966) Quartz of amethyst color. Kristallografiya 11:236–244 (Russ)Google Scholar
  39. Chentsova LG, Tsinober LI, Samoilovich MI, Kolodieva SV (1972) Some features of the electrolysis of quartz crystals in air and in vacuum. Sov Phys Crystallogr 17:317–321 (Engl Transl)Google Scholar
  40. Cohen AJ (1956a) Anisotropic color centers in alpha-quartz. Part I. Smoky quartz. J Chem Phys 25:908–914Google Scholar
  41. Cohen AJ (1956b) Color centers in the alpha-quartz called amethyst. Am Mineral 41:874–891Google Scholar
  42. Cohen AJ (1960) Substitutional and interstitial aluminum impurity in quartz, structure and color center interrelationships. J Phys Chem Solids 13:321–325Google Scholar
  43. Cohen AJ (1975) On the color centers of iron in amethyst and synthetic quartz: a reply. Am Mineral 60:338–339Google Scholar
  44. Cohen AJ, Hassan F (1970) Iron in synthetic quartz: heat and radiation induced changes. Science 167:176–177Google Scholar
  45. Cohen AJ, Hassan F (1974) Ferrous and ferric ions in synthetic alpha-quartz and natural amethyst. Am Mineral 59:719–728Google Scholar
  46. Cohen AJ, Makar LN (1982) Models for color centers in smoky quartz. Phys Status Solidi A 73:593–596Google Scholar
  47. Cohen AJ, Smith HL (1958) Anisotropic color centers in alpha-quartz. II. Germanium-doped synthetic quartz. J Chem Phys 24:401–405Google Scholar
  48. Cook AR, Matarrese LM (1969) Zero-field epr of Fe3+ in quartz. J Chem Phys 50:2361–2364Google Scholar
  49. Cox RT (1976) ESR of an S=2 centre in amethyst quartz and its possible identification as the d 4 ion Fe4+. J Phys C: Solid State Phys 9:3355–3361Google Scholar
  50. Cox RT (1977) Optical absorption of the d 4 ion iron (4+) in pleochroic amethyst quartz. J Phys C: Solid State Phys 10:4631–4643Google Scholar
  51. Daniels ME, Morton IP (1981) The thermal conductivity and magnetization of iron-doped quartz crystals. Physica 108B:867–868Google Scholar
  52. Davies JJ (1976) Optically-detected magnetic resonance and its applications. Contemp Phys 17:275–294Google Scholar
  53. Davis PH, Weil JA (1978) Silver atom center in alpha-quartz. J Phys Chem Solids 39:775–780Google Scholar
  54. Davis PH, Huang CY, Weil JA (1978) Paramagnetic aluminum-silver centers in alpha-quartz. J Phys Chem Solids 39:897–899Google Scholar
  55. Dennen WH, Puckett AM (1971) On the chemistry and color of rose quartz. Mineral Rec 3:226–227Google Scholar
  56. Dennen WH, Puckett AM (1972) On the chemistry and color of amethyst. Can Mineral 11:448–456Google Scholar
  57. Devine RAB, Golanski A (1983) Creation and annealing kinetics of magnetic oxygen vacancy centers in SiO2. J Appl Phys 54:3833–3838Google Scholar
  58. De Vos WJ, Volger J (1970) Dielectric relaxation phenomena in smoky quartz. Physica 47:13–37Google Scholar
  59. Ebert I, Hennig HP (1974) Elektronenspinresonanz von mechanisch aktiviertem Quarz. Z Phys Chemie (Leipzig) 255:812–814Google Scholar
  60. Fedoruk GG, Rutkovskii IZ (1982) Free induction of E1-centres in crystalline quartz. Phys Status Solidi B 112:453–456Google Scholar
  61. Feigl FJ, Anderson JH (1970) Defects in crystalline quartz: Electron paramagnetic resonance of E′ vacancy centers associated with germanium impurities. J Phys Chem Solids 31:575–596Google Scholar
  62. Feigl FJ, Fowler WB, Yip KL (1974) Oxygen vacancy model for the E1 center in SiO2. Solid State Commun 14:225–229Google Scholar
  63. Felsche J, Lietz J (1968a) Defects in quartz. I. Electrical conductivity and discoloration of smoky quartz. Neues Jahrb Mineral Abh 109:238–249Google Scholar
  64. Felsche J, Lietz J (1968b) Defects in quartz. II. Field distribution in electrolytic discoloration of smoky quartz. Neues Jahrb Mineral Abh 109:250–258Google Scholar
  65. Fowler WB (1983) Theory of strongly relaxed defects in crystalline and amorphous oxides. Radiat Eff 72:27–38Google Scholar
  66. Friebele EJ, Ginther RJ, Sigel GH Jr (1974a) Radiation protection of fiber optic materials: effects of oxidation and reduction. Appl Phys Lett 24:412–414Google Scholar
  67. Friebele EJ, Griscom DL, Sigel GH Jr (1974b) Defect centers in a germanium-doped silica-core optical fiber. J Appl Phys 45:3424–3428Google Scholar
  68. Friebele EJ, Griscom DL, Stapelbroek M, Weeks RA (1979) Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica. Phys Rev Lett 42:1346–1349Google Scholar
  69. Gobsch G, Haberlandt H, Weckner HJ, Reinhold J (1978) Calculation of the g-tensor and 29Si hyperfine tensors of the E1 centre in silicon dioxide. Phys Status Solidi B 90:309–317Google Scholar
  70. Goshen S, Friedman M, Thieberger R, Weil JA (1983) Models for the hydrogen atom confined within crystalline quartz. J Chem Phys 79:4363–4366Google Scholar
  71. Greenberger A, Mills AP, Thompson A, Berko S (1970) Evidence for positronium-like Bloch states in quartz single crystals. Phys Lett 32A:72–73Google Scholar
  72. Griffiths JHE, Owen J, Ward IM (1954) Paramagnetic resonance in neutron-irradiated diamond and smoky quartz. Nature 173:439–442Google Scholar
  73. Griffiths JHE, Owen J, Ward IM (1955) Magnetic resonance in irradiated diamond and quartz. Report of the Bristol Conference — Defects in Crystalline Solids. Phys Soc London 81–87Google Scholar
  74. Griscom DL (1979) E′ center in glassy silicon dioxide: microwave saturation properties and confirmation of the primary silicon-29 hyperfine structure. Phys Rev B 20:1823–1834Google Scholar
  75. Griscom DL (1980) E′ center in glassy SiO2: 17O, 1H, and “very weak” 29Si superhyperfine structure. Phys Rev B 22:4192–4202Google Scholar
  76. Griscom DL, Fowler WB (1980) Electron transfer model for E′-center optical absorption in silicon dioxide. The Physics of MOS insulators, Proc Int Topical Conf at Raleigh NC (USA) 97–101Google Scholar
  77. Griscom DL, Friebele EJ (1981) Fundamental defect centers in glass: 29Si hyperfine structure of the nonbridging oxygen hole center and the peroxy radical in a-SiO2. Phys Rev B 24:4896–4898Google Scholar
  78. Griscom DL, Friebele EJ, Long KJ, Fleming JW (1983) Fundamental defect centers in glass: esr and optical spectroscopic studies of irradiated phosphorus-doped silica glass and optical fibers. J Appl Phys 54:3743–3762Google Scholar
  79. Haberlandt H, Ritschl F (1980) CNDO/2 calculations of alpha-quartz. Phys Stat Solidi B 100:503–508Google Scholar
  80. Haberlandt H, Weckner HJ, Gobsch G, Reinhold J (1979) The g-tensor of the interstitial oxygen and the broken Si-O bond in silicon dioxide — a MO model calculation. Phys Stat Solidi B 93:K71-K75Google Scholar
  81. Halliburton LE, Koumvakalis N, Markes ME, Martin JJ (1981) Radiation effects in crystalline SiO2: the role of aluminum. J Appl Phys 52:3565–3574Google Scholar
  82. Halliburton LE, Perlson BD, Weeks RA, Weil JA, Wintersgill MC (1979) EPR study of the E4 center in alpha-quartz. Solid State Commun 30:575–579Google Scholar
  83. Halperin A, Ralph JE (1963) Optical studies of anisotropic color centers in germanium-doped quartz. J Chem Phys 39:63–73Google Scholar
  84. Hassan F, Cohen AJ (1974) Biaxial color centers in amethyst quartz. Am Mineral 35:709–718Google Scholar
  85. Haven Y, Kats A, Van Wieringen JS (1966) Optical absorption and paramagnetic resonance of color centers in x-rayed alpha-quartz containing germanium. Philips Res Repts 21:446–476Google Scholar
  86. Hennig HP, Boden G, Ebert I, Jedamzik J, Geissler H, Steinike U (1980a) Einfluß einer Röntgenbestrahlung auf die epr-zentren in mechanisch aktiviertem Quarz. Z Chem 20:388–389Google Scholar
  87. Hennig HP, Ebert I, Steinike U, Geissler H, Kretzschmar U (1980b) Investigation of the interaction of quartz with H2 under supply of mechanical energy (I). Krist Tech 15:353–358Google Scholar
  88. Hickmott TW (1977) Annealing of surface states in polycrystalline silicon gate capacitors. J Appl Phys 28:723–733Google Scholar
  89. Hitt KB, Martin JJ (1983) Radiation-induced mobility of lithium and sodium in alpha-quartz. J Appl Phys 54:5030–5031Google Scholar
  90. Hutton DR (1964) Paramagnetic resonance of Fe+++ in amethyst and citrine quartz. Phys Lett 12:310–311Google Scholar
  91. Hutton DR, Troup GJ (1966) Paramagnetic resonance centres in amethyst and citrine quartz. Nature 211:621Google Scholar
  92. Ikari H (1980) Electric field dependence of positronium formation in crystalline quartz. Jpn J Appl Phys 19:L588-L590Google Scholar
  93. Isoya J, Weil JA, Claridge RFC (1978) The dynamic interchange and relation between germanium centers in alpha-quartz. J Chem Phys 69:4876–4884Google Scholar
  94. Isoya J, Weil JA (1979) Uncompensated titanium (3+) center in alpha-quartz. Phys Status Solidi A 52:K193Google Scholar
  95. Isoya J, Weil JA, Halliburton LE (1981) EPR and ab initio SCF-MO studies of the Si.H-Si system in the E′4 center of alpha-quartz. J Chem Phys 74:5436–5448Google Scholar
  96. Isoya J, Tennant WC, Uchida Y, Weil JA (1982) Biradical center in alpha-quartz. J Magn Reson 49:489–498Google Scholar
  97. Isoya J, Weil JA, Davis PH (1983a) EPR of atomic hydrogen 1H and 2H in alpha-quartz. J Phys Chem Solids 44:335–343Google Scholar
  98. Isoya J, Bowman MK, Norris JR, Weil JA (1983b) An electron spin echo envelope modulation study of lithium nuclear hyperfine and quadrupole coupling in the A(Ti-Li) center of alpha-quartz. J Chem Phys 78:1735–1746Google Scholar
  99. Isoya J, Bowman MK, Norris JR, Weil JA (1984a) An epr and eseem study of the temperature dependence of the lithium hyperfine structure of germanium defect centres in alpha-quartz. To be publishedGoogle Scholar
  100. Isoya J, Tennant WC, Weil JA (1984b) The 47,49Ti spin-Hamiltonian of center A(Ti-Li) in alpha-quartz. To be publishedGoogle Scholar
  101. Izumi T, Matsumori T (1975) Paramagnetic centers created in Si-SiO2 structure by ion implantation. Jpn J Appl Phys 14:1067–1068Google Scholar
  102. Jacobsen EH, Shiren NS, Tucker EB (1959) Effects of 9.2-kMc/sec ultrasonics on electron spin resonances in quartz. Phys Rev Lett 3:81–83Google Scholar
  103. Jain H, Nowick AS (1982a) Electrical conductivity of synthetic and natural quartz crystals. J Appl Phys 53:477–484Google Scholar
  104. Jain H, Nowick AS (1982b) Radiation-induced conductivity in quartz crystals. J Appl Phys 53:485–489Google Scholar
  105. Jakubith M, Lehmann G (1979) An epr study of shock-wave effects on amethyst and iron-doped quartz. Ber Bunsenges Phys Chem 83:609–614Google Scholar
  106. Jani MG, Bossoli RB, Halliburton LE (1983a) Further characterization of the E1 center in crystalline SiO2. Phys Rev B 27:2285–2293Google Scholar
  107. Jani MG, Halliburton LE, Kohnke EE (1983b) Point defects in crystalline SiO2: thermally stimulated luminescence above room temperature. J Appl Phys 54:6321–6328Google Scholar
  108. Kats A (1958) Spectres d'absorption du verre de silice et du quartz cristallin contenant des impuretes de Ge. Verres Refract 12:191–205Google Scholar
  109. Kaul IK, Bhattacharya PK, Tolpadi S (1966) Age determination by study of the thermoluminescence of smoky quartz. J Geophys Res 71:1275–1282Google Scholar
  110. Kneubühl FK (1963) Symmetry and microwave spectra of polyatomic paramagnetic centers. Phys Condens Matter 1:410–447Google Scholar
  111. Kneubühl FK (1965) Paramagnetic resonance of centers with symmetries N, Ñ and N/M. Phys Condens Matter 4:50–62Google Scholar
  112. Koumvakalis N (1980) Defects in crystalline SiO2: optical absorption of the aluminum-associated hole center. J Appl Phys 51:5528–5532Google Scholar
  113. Koumvakalis N, Markes M (1980) Deuterization of synthetic quartz. J Appl Phys 51:3431–3432Google Scholar
  114. Krefft GB (1975) Effects of high-temperature electrolysis on the coloration characteristics and OH-absorption bands in alpha-quartz. Radiat Eff 26:249–259Google Scholar
  115. Laman FC, Weil JA (1977) Silver-compensated germanium center in alpha-quartz. J Phys Chem Solids 38:949–956Google Scholar
  116. Laman FC, Weil JA (1978) A germanium tri-hydrogen center in alpha-quartz. In The Physics of SiO2 and its Interfaces. Pantelides ST (ed). Pergamon, New York, pp 253–257Google Scholar
  117. Lang R, Calvo C, Datars WR (1977) Phase transformation in AlPO4 and quartz studied by electron paramagnetic resonance of Fe3+. Can J Phys 55:1613–1620Google Scholar
  118. Laves F, Schindler P, Weaver HE (1961) Eigenschaften von Elektrolyse-Farbzentren in Quarzkristallen. Naturwissenschaften 23:714Google Scholar
  119. Lehmann G (1967) Farbzentren des Eisens als Ursache der Farbe von Amethyst. Z Naturforsch A 22:2080–2085Google Scholar
  120. Lehmann G (1969a) Interstitial incorporation of di- and trivalent cobalt in quartz. J Phys Chem Solids 30:395–399Google Scholar
  121. Lehmann G (1969b) Zur Farbe von Rosenquarz. Neues Jahrb Mineral Monatsh 5:222–225Google Scholar
  122. Lehmann G (1971a) The structure of yellow iron centres in quartz. Phys Status Solidi B 48:K65-K67Google Scholar
  123. Lehmann G (1971b) Yellow color centers in natural and synthetic quartz. Phys Condens Matter 13:297–306Google Scholar
  124. Lehmann G (1975) On the color centers of iron in amethyst and synthetic quartz: a discussion. Am Mineral 60:335–337Google Scholar
  125. Lehmann G, Moore WJ (1966) Color center in amethyst quartz. Science 152:1061–1062Google Scholar
  126. Le Page Y, Calvert LD, Gabe EJ (1980) Parameter variation in low-quartz between 94 and 298 K. J Phys Chem Solids 41:721–725Google Scholar
  127. Lorenze RV, Feigl FJ (1973) Defects in crystalline quartz: electron paramagnetic resonance of multiple-alkali-compensated centers associated with germanium impurities. Phys Rev B 8:4833–4841Google Scholar
  128. Lysakov VS (1978) Study of the luminescence of quartz activated by manganese ions. Izv Vyssh Uchebn Zaved Fiz 21:128–129 (Russ)Google Scholar
  129. Mackey JH Jr (1963) EPR study of impurity-related color centers in germanium-doped quartz. J Chem Phys 39:74–83Google Scholar
  130. Mackey JH Jr, Boss JW, Wood DE (1970) EPR study of substitutional-aluminum-related hole centers in synthetic alpha-quartz. J Magn Reson 3:44–54Google Scholar
  131. Markes ME, Halliburton LE (1979) Defects in synthetic quartz: Radiation-induced mobility of interstitial ions. J Appl Phys 50:8172–8180Google Scholar
  132. Maschmeyer D, Lehmann G (1982) An Al..O-P radiation defect in rose-colored quartz. Solid State Chem. Proc Second European Conf, Veldhoven, Holland. In Studies in Inorganic Chemistry, Metselaar R, Heijligers HJM, Schoonman J (eds). Elsevier, Amsterdam, pp 315–318Google Scholar
  133. Maschmeyer D, Lehmann G (1983a) New hole centers in natural quartz. Submitted to Phys Chem MineralsGoogle Scholar
  134. Maschmeyer D, Lehmann G (1983b) A trapped hole center causing rose coloration of natural quartz. Z Kristallogr 163:181–196Google Scholar
  135. Maschmeyer D, Lehmann G (1983c) New electron centers in neutron-irradiated natural quartz. Submitted to Solid State CommunGoogle Scholar
  136. Maschmeyer D, Niemann K, Hake H, Lehmann G, Räuber A (1980) Two modified smoky quartz centers in natural citrine. Phys Chem Minerals 6:145–156Google Scholar
  137. Mashkovtsev RI, Solntsev VP, Shcherbakova MYa (1978) Paramagnetic centers with S=1 in alpha-quartz. Tr Inst Geol Geofiz, Akad Nauk SSSR, Sib Otd 385:86–91 (Russ)Google Scholar
  138. Matarrese LM, Wells JS, Peterson RL (1969) EPR spectrum of Fe3+ in synthetic brown quartz. J Chem Phys 50:2350–2360Google Scholar
  139. McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Minerals 9:79–94Google Scholar
  140. McMorris DW (1971) Impurity color centers in quartz and trapped electron dating: electron spin resonance, thermoluminescence studies. J Geophys Res 76:7875–7887Google Scholar
  141. Medvedev EM (1976) Mechanism of the formation of E' centers in natural quartzes. Geokhimiya 457–459 (Russ)Google Scholar
  142. Meyer BK, Lohse F, Spaeth JM, Weil JA (1984) Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz. Submitted to J Phys C: Solid State PhysGoogle Scholar
  143. Mitchell EWJ, Paige EGS (1955) The anisotropic absorption of the visible bands in irradiated alpha-quartz. Philos Mag 46:1353–1361Google Scholar
  144. Mitchell EWJ, Paige EGS (1956) The optical effects of radiation induced atomic damage in quartz. Philos Mag 1:1085–1115Google Scholar
  145. Moiseev BM, Rakov LT (1979) Kinetics of the breakdown of E pre-centres in quartz. Russ J Phys Chem 53:1482–1484 (Engl)Google Scholar
  146. Mombourquette MJ, Weil JA, Mezey PG (1984a) Ab initio SCF-MO calculations on AlO4 centres in alpha-quartz. I. Can J Phys 62:21–34Google Scholar
  147. Mombourquette MJ, Weil JA (1984b) Ab initio SCF-MO calculations on AlO4 centres in alpha-quartz. II. Can J Phys. To be publishedGoogle Scholar
  148. Mombourquette MJ, Tennant WC, Weil JA (1984c) EPR study of Fe3+ in alpha-quartz: a re-examination of the so-called I-centre. To be publishedGoogle Scholar
  149. Nassau K, Prescott BE (1975) A reinterpretation of smoky quartz. Phys Status Solidi A 20:659–663Google Scholar
  150. Nassau K, Prescott BE (1977) Smoky, blue, greenish-yellow, and other irradiation related colors in quartz. Mineral Mag 41:301–312Google Scholar
  151. Nassau K, Prescott BE (1978) Growth-induced radiation-developed pleochroic anisotropy in smoky quartz. Am Mineral 63:230–238Google Scholar
  152. Nelson CM, Weeks RA (1960) Trapped electrons in irradiated quartz and silica: I. Optical absorption. J Am Ceram Soc 43:396–399Google Scholar
  153. Nishi Y (1966) Electron spin resonance in SiO2 grown on silicon Jpn J Appl Phys 5:333Google Scholar
  154. Nishi Y (1971) Study of silicon-silicon dioxide structure by electron spin resonance I. Jpn J Appl Phys 10:52–62Google Scholar
  155. Nishi Y, Tanaka K, Ohwada A (1972) Study of silicon-silicon dioxide structure by electron spin resonance II. Jpn J Appl Phys 11:85–91Google Scholar
  156. Novozhilov AI, Samoilovich MI, Tsinober LI (1964) Short-lived paramagnetic centers in quartz containing germanium impurities. J Struct Chem 5:580–581 (Engl Transl)Google Scholar
  157. Nuttall RHD, Weil JA (1980a) Oxygen-17 hyperfine structure of trapped-hole center [AlO4]0 in alpha-quartz. Solid State Commun 35:789–791Google Scholar
  158. Nuttall RHD, Weil JA (1980b) Two hydrogenic trapped-hole species in alpha-quartz. Solid State Commun 33:99–102Google Scholar
  159. Nuttall RHD, Weil JA (1981a) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2·I·[AlO4]0. Can J Phys 59:1696–1708Google Scholar
  160. Nuttall RHD, Weil JA (1981b) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2·II·[AlO4/H+]+ and [AlO4/Li+]+. Can J Phys 59:1709–1718Google Scholar
  161. Nuttall RHD, Weil JA (1981c) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2·III·[AlO4]+. Can J Phys 59:1886–1892Google Scholar
  162. Nuttall RHD, Weil JA, Claridge RFC (1976) Double-hole aluminum center in alpha-quartz. Solid State Commun 19:141–142Google Scholar
  163. O'Brien MCM (1955) The structure of the colour centres in smoky quartz. Proc Roy Soc A 231:404–414Google Scholar
  164. O'Brien MCM, Pryce MHL (1955) Paramagnetic resonance in irradiated diamond and quartz: interpretation. Report of the Bristol Conference — Defects in Crystalline Solids. Phys Soc London 88–91Google Scholar
  165. Okada M, Rinneberg H, Weil JA, Wright PM (1971) EPR of Ti3+ centers in alpha-quartz. Chem Phys Lett 11:275–276Google Scholar
  166. Perlson BD, Weil JA (1974) Atomic hydrogen in alpha-quartz. J Magn Res 15:594–595Google Scholar
  167. Pilbrow JR, Lowrey MR (1980) Low-symmetry effects in electron paramagnetic resonance. Rep Prog Phys 43:433–495Google Scholar
  168. Poole CP Jr (1983) Electron Spin Resonance: Wiley, New YorkGoogle Scholar
  169. Poole CP Jr, Farach HA (1972) The Theory of Magnetic Resonance. Wiley, New YorkGoogle Scholar
  170. Radtsig VA (1979) Paramagnetic centers on pristine quartz surfaces. The reaction with H2 and D2 molecules. Kinet Catal 20:373–379 (Engl Transl)Google Scholar
  171. Rae AD (1969) Relationship between the experimental Hamiltonian and the point symmetry of a paramagnetic species in a crystal. J Chem Phys 50:2672–2685Google Scholar
  172. Rinneberg H, Weil JA (1972) EPR studies of Ti3+ − H+ centers in x-irradiated alpha-quartz. J Chem Phys 56:2019–2028Google Scholar
  173. Roitsin AB (1981) Generalized spin-Hamiltonian and low-symmetry effects in paramagnetic resonance. Phys Status Solidi (B) 104:11–35Google Scholar
  174. Ruffa AR (1970) Model for the E'1 center in SiO2. Phys Rev Lett 25:650–652Google Scholar
  175. Sachs M (1960) Rotational properties of paramagnetic resonance spectra of noncubic crystals. J Phys Chem Solids 15:291–305Google Scholar
  176. Saint-Paul M, Joffrin J (1982) Electric dipole echoes in smoky quartz at very low temperatures. J Low Temp Phys 49:195–212Google Scholar
  177. Samoilovich MI, Gordienko LA, Tsinober LI (1970a) Kinetics of the formation of radiation centers of smoky color in synthetic quartz. Sov Radiochem 12:107–109 (Engl Transl)Google Scholar
  178. Samoilovich MI, Tsinober LI, Kreiskop VN (1970b) Features of the smoky color of natural quartz crystals: morions. Sov Phys Crystallogr 15:438–440 (Engl Transl)Google Scholar
  179. Samoilovich MI, Tsinober LI, Khadzhi VE, Gordienko LA (1972) Radiation-induced diffusion of alkali ions and protons in quartz. Sov Phys Crystallogr 17:147–150 (Engl Transl)Google Scholar
  180. Samoilovich MI, Novozhilov AI, Tsinober LI, Malyshev AG (1973) ESR spectrum of the O hole center in natural quartz. J Struct Chem 14:416–419 (Engl Transl)Google Scholar
  181. Scala CM, Hutton DR (1976) Site assignment of Fe3+ in alpha-quartz. Phys Status Solidi B 73:K115-K117Google Scholar
  182. Schirmer OF (1976) Smoky coloration of quartz caused by bound small hole polaron optical absorption. Solid State Commun 18:1349–1351Google Scholar
  183. Schirmer OF (1980a) Small polaron aspects of defects in oxide materials. J Phys Colloque (Orsay Fr) (C6) 41:479–484Google Scholar
  184. Schirmer OF (1980b) Assignment of the optical absorption of the E'1 center in SiO2. The Physics of MOS Insulators — Proc Int Topical Conf at Raleigh NC (USA) 102–106Google Scholar
  185. Schnadt R, Räuber A (1971) Motional effects in the trapped-hole center in smoky quartz. Solid State Commun 9:159–161Google Scholar
  186. Schnadt R, Schneider J (1970) The electronic structure of the trapped hole center in smoky quartz. Phys Condens Matter 11:19–42Google Scholar
  187. Seifarth J, Bartuk U, Karthe W (1981) Zur Kinetik paramagnetischer Eisenzentren in Alpha-Quarz. Silikattechnik 31:276Google Scholar
  188. Semenov KP, Fotchenkov AA (1977) Effectiveness of the action of various forms of radiation on quartz. Sov Phys Crystallogr 22:326–330 (Engl Transl)Google Scholar
  189. Shamfarov Yal, Smirnova TA (1963) Investigation of spin-lattice relaxation in neutron-irradiated quartz. Sov Phys Solid State 5:761–763 (Engl Transl)Google Scholar
  190. Sibley WA, Martin JJ, Wintersgill MC, Brown JD (1979) The effect of radiation on the OH infrared absorption of quartz crystals. J Appl Phys 50:5449–5452Google Scholar
  191. Silsbee RH (1961) Electron spin resonance in neutron-irradiated quartz. J Appl Phys 32:1459–1462Google Scholar
  192. Skinner R, Weil JA (1978) Spin-Hamiltonian energies and state vectors. II. J Magn Reson 29:223–241Google Scholar
  193. Smith G, Vance ER, Hasan Z, Edgar A, Runciman WA (1978) A charge transfer mechanism for the colour of rose quartz. Phys Status Solidi A 46:K135-K140Google Scholar
  194. Solntsev VP, Lysakov VS (1975) ESR and luminescence investigation of the electron capture centers in irradiated quartz. J Appl Spectr 22:339–341 (Engl Transl)Google Scholar
  195. Solntsev VP, Mashkovtsev RI (1978) Stabilization of silver and copper atoms in alpha-quartz. Sov Phys Solid State 20:471–474 (Engl Transl)Google Scholar
  196. Solntsev VP, Shcherbakova MYa (1972) Electron spin resonances of Ti3+ in alpha-quartz and zircon. J Struct Chem 13:859–861 (Engl Transl)Google Scholar
  197. Solntsev VP, Mashkovtsev RI, Shcherbakova MYa (1974) Copper and nickel centers in alpha-quartz. Sov Phys Solid State 16:1192–1193 (Engl Transl)Google Scholar
  198. Solntsev VP, Mashkovtsev RI, Shcherbakova MYa (1977) Electron paramagnetic resonance of the radiation centers in quartz. J Struct Chem 18:578–583 (Engl Transl)Google Scholar
  199. Stock HD, Lehmann G (1977) Phenomena associated with diffusion of trivalent iron in amethyst quartz. J Phys Chem Solids 38:243–246Google Scholar
  200. Suryanarayana D, Weil JA (1976) On the hyperfine splitting of the hydrogen atom in a spherical box. J Chem Phys 64:510–513Google Scholar
  201. Taylor AL, Farnell GW (1964) Spin-lattice interaction experiments on color centers in quartz. Can J Phys 42:595–607Google Scholar
  202. Tsinober LI, Samoilovich MI, Gordienko LA (1966) Some characteristics of smoky color in quartz crystals doped with aluminum and germanium. Sov Phys Crystallogr 10:732–735 (Engl Transl)Google Scholar
  203. Tsinober LI, Samoilovich MI, Gordienko LA, Chentsova LG (1967) Anomalous pleochroism in synthetic smoky quartz crystals. Sov Phys Crystallogr 12:53–56 (Engl Transl)Google Scholar
  204. Uchida Y (1977) ESR studies of phosphoric ion in alpha-quartz. J Phys Soc Jpn 42:1937–1941Google Scholar
  205. Uchida Y, Isoya J, Weil JA (1979) Dynamic interchange among three states of phosphorus(4+) in alpha-quartz. I. J Phys Chem 83:3462–3467Google Scholar
  206. Uchida Y, Isoya J, Weil JA (1984) Dynamic interchange among three states of phosphorus(4+) in alpha-quartz. II. J Phys Chem. To be publishedGoogle Scholar
  207. Vakhidov ShA, Gasanov EM, Ibragimov ZhD, Yarkulov U (1973) Mechanism of the restoration of the center of the smoky color of thermochemically treated alpha-quartz by radiation. Radiochem 15:469–471 (Engl Transl)Google Scholar
  208. Van den Brom WE, Volger J (1974) Electromodulated absorption in smoky quartz. Physica 75:245–267Google Scholar
  209. Van Wieringen JS, Haven Y, Kats A (1963) Paramagnetic resonance of colour centres in alpha-quartz containing germanium. In Magnetic and Electric Resonance and Relaxation. Proceedings of the XIth Colloque Ampere. 1962. Eindhoven. North Holland, Amsterdam, pp 403–408Google Scholar
  210. Vazhenin VA, Sherstkov YuA (1974) Effect of electric field on ESR spectrum of Fe3+ in alpha-quartz. Sov Phys Crystallogr 19:104 (Engl Transl)Google Scholar
  211. Vereshchak MF, Zhetbaev AK, Kaipov DK, Satpaev KK (1973) Mössbauer effect in impurity atoms of Fe57 in quartz single crystals. Sov Phys Solid State 14:2638–2639 (Engl Transl)Google Scholar
  212. Von Vultee J, Lietz J (1956) Über die Rolle des Titans als Färbungsursache von Blau- und Rosenquarzen. Neues Jahrb Mineral Monatsh 3:49–58Google Scholar
  213. Wang ST, Farnell GW (1965) Concentration dependence of spinlattice relaxation time of color centers in quartz. Can J Phys 43:1919–1921Google Scholar
  214. Weeks RA (1956) Paramagnetic resonance of lattice defects in irradiated quartz. J Appl Phys 27:1376–1381Google Scholar
  215. Weeks RA (1963) Paramagnetic spectra of E'2 centers in crystalline quartz. Phys Rev 130:570–576Google Scholar
  216. Weeks RA (1970) Paramagnetic resonance and optical absorption in gamma-ray irradiated alpha-quartz: the “Al” center. J Am Ceram Soc 53:176–179Google Scholar
  217. Weeks RA, Abraham M (1965a) Electron spin resonance of irradiated quartz: atomic hydrogen. J Chem Phys 42:68–71Google Scholar
  218. Weeks RA, Abraham M (1965b) Spin-one states of defects in quartz. Bull Am Phys Soc 10:374Google Scholar
  219. Weeks RA, Lell E (1964) Relation between E' centers and hydroxyl bonds in silica. J Appl Phys 35:1932–1938Google Scholar
  220. Weeks RA, Nelson CM (1960a) Irradiation effects and short-range order in fused silica and quartz. J Appl Phys 31:1555–1558Google Scholar
  221. Weeks RA, Nelson CM (1960b) Trapped electrons in irradiated quartz and silica: II. Electron spin resonance. J Am Ceram Soc 43:399–404Google Scholar
  222. Weeks RA, Sonder E (1962) The relation between the magnetic susceptibility, spin resonance, and optical absorption of the E1 center in fused silica. Proc First Int Conf on Paramagnetic Resonance, Jerusalem, pp. 869–879Google Scholar
  223. Weil JA (1971a) The analysis of large hyperfine splitting in paramagnetic resonance spectroscopy. J Magn Reson 4:394–399Google Scholar
  224. Weil JA (1971b) Germanium-hydrogen-lithium center in alpha-quartz. J Chem Phys 55:4685–4698Google Scholar
  225. Weil JA (1975a) Comments on second-order spin-Hamiltonian energies. J Magn Reson 18:113–116Google Scholar
  226. Weil JA (1975b) The aluminum centers in alpha-quartz. Radiat Eff 26:261–265Google Scholar
  227. Weil JA (1979) Hydrogen atom in a spherical box. II. Effect on hyperfine energy of excited state admixture. J Chem Phys 71:2803–2805Google Scholar
  228. Weil JA (1981) Electric field effects on the ground state hyperfine structure of hydrogenic atoms. Can J Phys 59:841–851Google Scholar
  229. Weil JA, Anderson JH (1961) Direct field effects in electron paramagnetic resonance hyperfine spectra. J Chem Phys 35:1410–1417Google Scholar
  230. Weil JA, Buch T, Clapp JE (1973) Crystal point group symmetry and microscopic tensor properties in magnetic resonance spectroscopy. Adv Magn Reson 6:183–257Google Scholar
  231. Weil JA, Huang CY, Davis PH (1978) Paramagnetic Ag2/AlO4 center in alpha-quartz. Solid State Commun 27:1263–1264Google Scholar
  232. Wertz JE, Bolton JR (1972) Electron spin resonance. McGraw-Hill, New YorkGoogle Scholar
  233. Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centers in rose quartz. Nature 197:246–248Google Scholar
  234. Yip KL, Fowler WB (1975) Electronic structure of E'1 centers in SiO2. Phys Rev B 11:2327–2338Google Scholar
  235. Zaitov MM, Zaripov MM, Samoilovich MI, Khadzhi VE, Tsinober LI (1975) Fe3+ epr spectrum in irradiated quartz. Sov Phys Crystallogr 19:674–675 (Engl Transl)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • John A. Weil
    • 1
  1. 1.Department of ChemistryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations