Physics and Chemistry of Minerals

, Volume 15, Issue 4, pp 313–318 | Cite as

Comparative compressibility of end-member feldspars

  • R. J. Angel
  • R. M. Hazen
  • T. C. McCormick
  • C. T. Prewitt
  • J. R. Smyth


The compressibilities of the three end-member feldspars have been determined between 1 bar and 50 kbar by single crystal X-ray diffraction techniques, using a Merrill-Bassett type diamond anvil cell with three crystals loaded simultaneously. Low albite (ordered aluminium-silicon distribution) and high sanidine (disordered Al-Si) show similar behaviour on compression, with bulk moduli (linear fit to volume-pressure data) of 0.70 and 0.67 Mbar respectively. The most compressible cell axis of all three feldspars studied is a, indicating that the major change in the feldspar framework with pressure is a shortening of the overall length of the “crankshaft chains” by reduction of T-O-T angles.

Anorthite shows anomalous behaviour in that we have observed a previously unreported reversible phase transition at a pressure between 25.5 and 29.5 kbar. This transition is marked by large discontinuities in the unit cell angles and a small decrease of 0.2 percent in the cell volume with increasing pressure. The high-pressure phase is less compressible than the low-pressure phase, the bulk moduli being 0.94 and 1.06 Mbar respectively. There was no evidence of a monoclinic to triclinic inversion in sanidine that was expected to occur between 20 and 30 kbar on the basis of previous work on intermediate alkali feldspars.


Compressibility Diamond Anvil Cell Alkali Feldspar Bulk Modulo Reversible Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams LH, Wiliamson ED (1923) The compressibility of minerals and rocks at high pressures. J Franklin Inst 195:475–529. Quoted in Smith JV (1974) Feldspar Minerals, Vol. 1, p 596. Springer-Verlag, New YorkGoogle Scholar
  2. Adlhart W, Frey F, Jagodzinski H (1980) X-ray and neutron investigations of the P\(\bar 1\)-I\(\bar 1\) transition in pure anorthite. Acta Crystallogr A36:450–460Google Scholar
  3. Berking B (1976) Die Verfeinerung der Kristallstruktur eines lunaren Plagiochlases, An90. Z Kristallogr 144:189–197Google Scholar
  4. Brown WL, Openshaw RE, McMillan PF, Henderson CMB (1984) A review of the expansion behavior of alkali feldspars: coupled variations in cell parameters and possible phase transitions. Am Mineral 69:1058–1071Google Scholar
  5. Carpenter MA, McConnell JDC, Navrotsky A (1985) Enthalpies of ordering in the plagioclase feldspar solid solution. Geochim Cosmochim Acta 49:947–966CrossRefGoogle Scholar
  6. Foit FF, Peacor DR (1973) The anorthite crystal structure at 410° C and 830° C. Am Mineral 58:665–675Google Scholar
  7. Hamilton WC (1974) Angle settings for four-circle diffractometers. In: Ebers JA, Hamilton WC (Eds) International Tables for X-ray Crystallography, Vol. IV. Kynoch Press, BirminghamGoogle Scholar
  8. Harlow GE, Brown GE (1980) Low albite: an X-ray and neutron diffraction study. Am Miner 65:986–995Google Scholar
  9. Hazen RM (1976) Sanidine: Predicted and observed monoclinic-to-triclinic reversible transformations at high pressure. Science 194:105–107Google Scholar
  10. Hazen RM (1977) Temperature, pressure, and composition: structurally analagous variables. Phys Chem Minerals 1:83–94CrossRefGoogle Scholar
  11. Hazen RM, Finger LW (1982) Comparative crystal chemistry. John Wiley and Sons, New YorkGoogle Scholar
  12. Hazen RM, Prewitt CT (1977) Linear compressibilities of low albite: high pressure structural implications. Am Mineral 62:554–558Google Scholar
  13. Henderson CMB (1979) An elevated temperature X-ray study of synthetic disordered Na-K alkali feldspars. Contrib Mineral Petrol 70:71–79CrossRefGoogle Scholar
  14. Hovis GL (1980) Angular relations of alkali feldspar series and the triclinic-monoclinic displacive transformation. Am Mineral 65:770–778Google Scholar
  15. Kempster CJE, Megaw HD, Radoslovich EW (1962) The structure of anorthite, CaAl2Si2O8. I. Structure analysis. Acta Crystallogr 15:1005–1017CrossRefGoogle Scholar
  16. King H, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Crystallogr 12:374–378Google Scholar
  17. Kirkpatrick RJ, Kinsey RA, Smith KA, Henderson DM, Oldifeld E (1985) High resolution solid-state sodium-23, aluminium-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars. Am Mineral 70:106–123Google Scholar
  18. Kirkpatrick RJ, Carpenter MA, Yang WH, Montez B (1987) 29Si magic-angle NMR spectroscopy of low temperature ordered plagioclase feldspars. Nature 325:236–237CrossRefGoogle Scholar
  19. Kroll H, Ribbe PH (1983) Lattice parameters, composition and Al,Si order in alkali feldspars. In: Ribbe PH (Ed) Reviews in Mineralogy, Vol. 2, 2nd edition, Feldspar Mineralogy: 57–99Google Scholar
  20. McConnell JDC (1965) Electron optical study of effects associated with partial inversion in a silicate phase. Philos Mag 11:1289–1301Google Scholar
  21. McCormick T, Angel RJ, Hazen RM (1988) Compressibility of omphacite to 60 Kbar: Role of vacancies. (in prep.)Google Scholar
  22. Megaw (1974) Tilts and tetrahedra in feldspars. In: WS MacKenzie, J Zussman (Eds), The Feldspars, p 87–113. University of Manchester PressGoogle Scholar
  23. Ohashi Y, Finger LW (1974) Refinement of the crystal structure of sanidine at 25° C and 400° C. Carnegie Inst Washington Yearb 73:539–544Google Scholar
  24. Ohashi Y, Finger LW (1975) An effect of temperature on the feldspar structure: crystal structure of sanidine at 800° C. Carnegie Inst Washington Year Book 74:569–572Google Scholar
  25. Piermarini GJ, Block S, Barnett JD (1973) Hydrostatic limits in liquids and solids to 100 Kbar. J Appl Phys 44:5377–5382CrossRefGoogle Scholar
  26. Prewitt CT, Sueno S, Papike JJ (1976) The crystal structures of high albite and monalbite at high temperatures. Am Miner 61:1213–1225Google Scholar
  27. Redfern SAT, Salje E (1987) Thermodynamics of plagioclase II: Temperature evolution of the spontaneous strain at the I\(\bar 1\)-P\(\bar 1\) phase transition in anorthite. Phys Chem Minerals 14:189–195Google Scholar
  28. Salje E (1985) Thermodynamics of sodium feldspar I: Order parameter treatment and strain induced coupling effects. Phys Chem Minerals 12:93–98Google Scholar
  29. Salje E (1987) Thermodynamics of plagioclase I: Theory of the P\(\bar 1\)-I\(\bar 1\) phase transition in anorthite and calcium rich plagioclases. Phys Chem Minerals 14:181–188CrossRefGoogle Scholar
  30. Salje E, Kuscholke B, Wruck B, Kroll H (1985) Thermodynamics of sodium feldspar II: Experimental results and numerical calculations. Phys Chem Minerals 12:99–107Google Scholar
  31. Scambos TA, Smyth JR, McCormick TC (1987) Structure refinement of high sanidine from the upper mantle. Am Mineral 72:973–978Google Scholar
  32. Smith JV, Artioli G, Kvick A (1986) Low albite, NaAlSi3O8: Neutron diffraction study of crystal structure at 13K. Am Mineral 71:727–733Google Scholar
  33. Smyth JR (1986) Crystal structure refinement of a lunar anorthite, An94. Proc 17th Lunar Sci Conf, J Geophys Res 91:E91-E97Google Scholar
  34. Smyth JR, Hatton CJ (1977) A coesite-sanidine grospydite from the Roberts-Victor kimberlite. Earth Planet Sci Lett 34:284–290CrossRefGoogle Scholar
  35. Stewart DB, von Limbach D (1967) Thermal expanison of low and high albite. Am Mineral 52:389–413Google Scholar
  36. Swanson DK (1986) High temperature crystal chemical formalisms applied to K2Si4O9 and NaGaSi3O8. PhD thesis, State University of New York at Stony Brook, New York, USAGoogle Scholar
  37. Wainwright JE, Starkey J (1971) A refinement of the structure of anorthite. Z Kristallogr 133:75–84Google Scholar
  38. Wenk H-R, Kroll H (1984) Analysis of P\(\bar 1\), I\(\bar 1\) and C\(\bar 1\) plagioclase structures. Bull Mineral 107:467–487Google Scholar
  39. Winter JK, Ghose S, Okamura FP (1977) A high-temperature study of the thermal expansion and the anisotropy of the sodium atom in low albite. Am Miner 62:921–931Google Scholar
  40. Winter JK, Okamura FP, Ghose S (1979) A high temperature structural study of high albite, monalbite and the analbite-monalbite phase transition. Am Miner 64:409–423Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • R. J. Angel
    • 1
  • R. M. Hazen
    • 1
  • T. C. McCormick
    • 2
  • C. T. Prewitt
    • 1
  • J. R. Smyth
    • 2
  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashington DCUSA
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations