Acta Neuropathologica

, Volume 82, Issue 1, pp 60–65

P2-peptide induced experimental allergic neuritis: a model to study axonal degeneration

  • A. F. Hahn
  • T. E. Feasby
  • L. Wilkie
  • D. Lovgren
Regular Papers


In experimental allergic neuritis (EAN) severity of clincal disease and pathology correlate with the dose of antigen (Hahn et al., Lab Invest 59:115–125, 1988). To avoid axonal membrane contamination of the antigen, EAN was induced with a synthetic peptide, corresponding to residues 53–78 of bovine P2 myelin protein. Severity of EAN correlated with the dose of peptide in the inoculate. The relationship between demyelination, inflammation and axonal degeneration was studied. Low doses resulted in pure demyelination. Axonal degeneration occurred only with high doses of inflammation. The role of macrophages in producing axonal damage is discussed.

Key words

Experimental allergic neuritis: P2 myelin peptide Demyelination Axonal degeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asbury AK, Arnason BG, Adams RD (1969) The inflammatory lesion in idiopathic polyneuritis: its role in pathogenesis. Medicine 48:173–215Google Scholar
  2. 2.
    Beuche W, Friede RL (1984) The role of non-resident cells in Wallerian degeneration. J Neurocytol 13:767–796Google Scholar
  3. 3.
    Beuche W, Friede RL (1986) Myelin phagocytosis in Wallerian degeneration of peripheral nerves depends on silica-sensitive, bg/bg-negative and Fc-positive monocytes. Brain Res 378:97–106Google Scholar
  4. 4.
    Brück W, Friede RL (1990) Anti-macrophage CR3 antibody blocks myelin phagocytosis by macrophages in vitro. Acta Neuropathol 80:415–418Google Scholar
  5. 5.
    Feasby TE, Gilbert JJ, Brown WF, Bolton CF, Hahn AF, Koopman WJ, Zochodne DW (1986) An acute axonal form of Guillain-Barré polyneuropathy. Brain 109:1115–1126Google Scholar
  6. 6.
    Feasby TE, Gilbert JJ, Hahn AF, Neilson M (1987) complement depletion suppresses Lewis rat experimental allergic neuritis. Brain Res 419:97–103Google Scholar
  7. 7.
    Griffin JW, Stoll G, Li CH, Tyor W, Cornblath DR (1990) Macrophage responses in inflammatory demyelinating neuropathies. Ann Neurol 27 [Suppl]:S64-S68Google Scholar
  8. 8.
    Hahn AF, Feasby TE, Gilbert JJ (1985) Blood-nerve barrier studies in experimental allergic neuritis. Acta Neuropathol (Berl) 68:101–109Google Scholar
  9. 9.
    Hahn AF, Feasby TE, Steele A, Lovgren DS, Berry J (1988) Demyelination and axonal degeneration in Lewis rat experimental allergic neuritis depend on the myelin dosage. Lab Invest 59:115–125Google Scholar
  10. 10.
    Hahn AF, Feasby TE, Wilkie L, Lovgren D (1990) Dose-dependent demyelination and axonal degeneration in passive cell-transfer EAN. Neurology 40 [Suppl 1]:389Google Scholar
  11. 11.
    Hartung HP, Toyka KV (1990) T-cell and macrophage activation in experimental autoimmune neuritis and Guillain-Barré syndrome. Ann Neurol 27 [Suppl]:S57-S63Google Scholar
  12. 12.
    Hartung HP, Schäfer B, Heininger K, Stoll G, Toyka KV (1988) The role of macrophages and eicosanoids in the pathogenesis of experimental allergic neuritis. Brain 111:1039–1059Google Scholar
  13. 13.
    Hartung HP, Schäfer B, Heininger K Toyka KV (1988) Suppression of experimental autoimmune neuritis by the oxygen radical scavengers superoxide dismutase and catalase. Ann Neurol 23:453–460Google Scholar
  14. 14.
    Hartung HP, Schäfer B, van der Meide PH, Fierz W, Heininger K, Toyka KV (1990) The role of interferon-gamma in the pathogenesis of experimental autoimmune disease of the peripheral nervous system. Ann Neurol 27:247–257Google Scholar
  15. 15.
    Heininger K, Stoll G, Linington C, Toyka KV, Wekerle H (1986) Conduction failure and nerve conduction slowing in experimental allergic neuritis induced by P2-specific T-cell lines. Ann Neurol 19:44–49Google Scholar
  16. 16.
    Izumo S, Linington C, Wekerle H, Meyermann R (1985) Morphologic study on experimental allergic neuritis mediated by T cell line specific for bovine P2 protein in Lewis rats. Lab Invest 53:209–218Google Scholar
  17. 17.
    Kadlubowski M, Hughes RAC (1979) Identification of the neuritogen for experimental allergic neuritis. Nature 277:140–141Google Scholar
  18. 18.
    King RHM, Thomas PK, Pollard JD (1977) Axonal and dorsal root ganglion cell changes in experimental alleric neuritis. Neuropathol Appl Neurobiol 3:471–486Google Scholar
  19. 19.
    Lampert PW (1969) Mechanism of demyelination in experimental allergic neuritis — Electron microscopic studies. Lab Invest 20:127–138Google Scholar
  20. 20.
    Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1:27–33Google Scholar
  21. 21.
    Madrid RE, Wisniewski HKM (1977) Axonal degeneration in demyelinating disorders. J Neurocytol 6:103–117Google Scholar
  22. 22.
    Olee T, Powell HC, Brostoff SW (1990) New minimum length requirement for a T cell epitope for experimental allergic neuritis. J Neuroimmunol 27:187–190Google Scholar
  23. 23.
    Prineas JW (1972) Acute idiopathic polyneuritis — An electron microscope study. Lab Invest 26:133–147Google Scholar
  24. 24.
    Ropper AH (1986) Severe acute Guillain-Barré syndrome. Neurology 36:429–432Google Scholar
  25. 25.
    Rostami A, Brown MJ, Lisak RP, Sumner AJ, Zweiman B, Pleasure DE (1984) The role of myelin P2 protein in the production of experimental allergic neuritis. Ann Neurol 16:680–685Google Scholar
  26. 26.
    Rostami AM, Ventura E, Kimura H, Brown MJ, Pleasure DE (1988) Induction of severe experimental allergic neuritis (EAN) with a synthetic peptide corresponding to the 53-78 amino acid sequence of the myelin P2 protein. Neurology 38 [Suppl 1]:375Google Scholar
  27. 27.
    Saida K, Saida T, Pleasure D, Nishitani H (1983) P2 protein-induced experimental allergic neuritis — An ultrastructural study. J Neurol Sci 62:77–92Google Scholar
  28. 28.
    Scheidt P, Friede RL (1987) Myelin phagocytosis in Wallerian degeneration. Properties of millipore diffusion chambers and immunohistochemical identification of cell populations. Acta Neuropathol (Berl) 75:77–84Google Scholar
  29. 29.
    Schmidt B, Stoll G, Hartung HP, Heininger K, Schäfer B, Toyka KV (1990) Macrophages but not Schwann cells express I a antigen in experimental autoimmune neuritis. Ann Neurol 28:70–77Google Scholar
  30. 30.
    Schröder JM, Krücke W (1970) Zur Feinstrukter der experimentell-allergischen Neuritis beim Kaninchen. Acta Neuropathol (Berl) 14:261–283Google Scholar
  31. 31.
    Shin HC, McFarlane EF, Pollard JD, Watson EGS (1989) Induction of experimental allergic neuritis with synthetic peptides from myelin P2 protein. Neurosci Lett 102:309–312Google Scholar
  32. 32.
    Stoll G, Griffin JW, Li CY, Trapp BD (1989) Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 18:671–683Google Scholar
  33. 33.
    Uyemura K, Suzuki M, Kitamura K, Horie K, Ogawa Y, Matsuyama H, Nozaki S, Muramatsu J (1982) Neuritonegic determinant of bovine P2 protein in peripheral nerve myelin. J Neurochem 39:895–898Google Scholar
  34. 34.
    Waksman BH, Adams RD (1955) Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants. J Exp Med 102:213–236Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. F. Hahn
    • 1
  • T. E. Feasby
    • 1
  • L. Wilkie
    • 1
  • D. Lovgren
    • 1
  1. 1.Department of Clinical Neurological SciencesUniversity of Western Ontario, Victoria HospitalLondonCanada

Personalised recommendations