Advertisement

Polymer Bulletin

, Volume 25, Issue 2, pp 265–271 | Cite as

Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black

  • Masao Sumita
  • Kazuya Sakata
  • Shigeo Asai
  • Keizo Miyasaka
  • Hideaki Nakagawa
Article

Abstract

Dispersion state of carbon black(CB) was studied in polymer blends which are incompatible with each other. It was found that CB distributes unevenly in each component of the polymer blend. There are two types of distribution. (1) One is almost predominantly distributed in one phase of the blend matrix, and in this phase fillers are relatively homogeneously distributed in the same manner as a single polymer composite. (2) In the second, the filler distribution concentrates at interface of two polymers. As long as the viscosities of two polymers are comparable, interfacial energy is the main factor determining uneven distribution of fillers in polymer blend matrices. This heterogeneous dispersion of conductive fillers has much effect on the electrical conductivity of CB filled polymer blends. The electrical conductivity of CB filled polymer blends is determined by two factors. One is concentration of CB in the filler rich phase and the other is phase continuity of this phase. These double percolations affect conductivity of conductive particle filled polymer blends.

Keywords

Polymer Viscosity Electrical Conductivity Carbon Black Polymer Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.Garland (1966) Trans.Met.Soc.AIME 236: 642Google Scholar
  2. 2.
    F.Buche (1972) J.Appl.Phys. 43: 4837Google Scholar
  3. 3.
    F.Buche (1973) J.Appl.Phys. 44: 532Google Scholar
  4. 4.
    W.F.Verhelst, K.G.Wolthuis, A.Voet, P.Ehrburger and J.B.Donnet (1977) Rubber Chem.Tech. 50: 735Google Scholar
  5. 5.
    A.K.Sircar and T.G.Lamond (1978) Rubber Chem.Tech. 51: 126Google Scholar
  6. 6.
    S.M.Aharoni (1972) J.Appl.Phys. 43: 2463Google Scholar
  7. 7.
    R.P.Kusy and D.T.Turner (1973) J.Appl.Polym.Sci. 17: 1631Google Scholar
  8. 8.
    K.Miyasaka, K.Watanabe, E.Jojima, H.Aida, M.Sumita and K.Ishikawa (1982) J.Mater.Sci. 17: 1682Google Scholar
  9. 9.
    M.Sumita, H.Abe, H.Kayaki and K.Miyasaka (1986) J.Macromol.Sci.-Phys. B 25: 171Google Scholar
  10. 10.
    M.Sumita, E.Jojima, H.Aida, K.Miyasaka and K.Ishikawa (1983) Kobunshi Ronbunshu 40: 203Google Scholar
  11. 11.
    G.E.Pike and C.H.Seager (1974) Phys.Rev.B 10: 1421Google Scholar
  12. 12.
    C.H.Seager and G.E.Pike (1974) Phys.Rev.B 10: 1435Google Scholar
  13. 13.
    M.H.Walters, S.N.Keyte (1962) Trans.Inst.I.R.I. 38: 40Google Scholar
  14. 14.
    S.Wu (1982) Polymer Interface and Adhesion, Marcel Dekker Inc. New YorkGoogle Scholar
  15. 15.
    Y.Hayakawa (1988) Thesis of Tokyo Institute of Technology, to be published to other journalGoogle Scholar
  16. 16.
    M.Sumita (1989) Nippon G upomu kyokaishi, 62, 7: 438Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Masao Sumita
    • 1
  • Kazuya Sakata
    • 1
  • Shigeo Asai
    • 1
  • Keizo Miyasaka
    • 1
  • Hideaki Nakagawa
    • 2
  1. 1.Department of Organic and Polymeric MaterialsTokyo Institute of TechnologyTokyoJapan
  2. 2.Mitsubishi Yuka CorporationYokkaichi-shi, MieJapan

Personalised recommendations