Contributions to Mineralogy and Petrology

, Volume 112, Issue 4, pp 450–462 | Cite as

The role of the crust in the magmatic evolution of the island of Lipari (Aeolian Islands, Italy)

  • S. Esperança
  • G. M. Crisci
  • R. de Rosa
  • R. Mazzuoli


Volcanic rocks on the island of Lipari show the entire range of Sr, Nd, Pb isotopic compositions displayed by other islands in the Aeolian archipelago. The rapid isotopic evolution of subaerial volcanic rocks on Lipari towards crustal values together with the appropriate isotopic composition of the neighbouring Calabrian crust (Serre) indicate that many geochemical characteristics observed in the lavas can be attributed to contamination and mixing with crustal materials and melts. Interpretation of the data is complicated by the fact that underplating onto the crust-mantle boundary and the specific lithologies present in the crustal section differ underneath each individual sector of the island. In the central and northern parts of the island, metapelitic rocks were incorporated to provide the more radiogenic Sr isotopic compositions of some lavas. The products from M. Guardia in the southern part of Lipari, where activity is restricted to the last 30–40 ka, bear geochemical similarities to the island of Vulcano, where it is proposed that considerable remobilization of the crust took place in the presence of mafic mantle-derived melts. On Lipari the petrogenetic processes of magma mixing and assimilation dominate over fractional crystallization, and the observed increase of K2O over Na2O can be correlated with contributions from metapelitic crustal lithologies. It is suggested that the variability in isotopic composition and the budget of alkalis (Na2O versus K2O) in the lavas can be explained by invoking a heat source from an intruding asthenospheric MORB-type mantle into a cooler lithospheric crust/mantle during the opening of the Tyrrhenian basin.


Isotopic Composition Lithology Volcanic Rock Na2O Magmatic Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barberi F, Bizouard H, Capaldi G, Gasparini P, Innocenti F, Joron JL, Lambert B, Treuil M, Allegre CJ (1977) Age and nature of basalts from the Tyrrhenian abyssal plain. Init Rep DSDP Leg 42A, site 373A, 509–514Google Scholar
  2. Barberi F, Innocenti F, Ferrara G, Keller J, Villari L (1974) Evolution of Eolian are volcanism (Southern Tyrrhenian Sea). Earth Planet Sci Lett 21:269–276Google Scholar
  3. Barker DS (1987) Rhyolites contaminated with metapelite and gabbro, Lipari, Aeolian Islands, Italy: products of lower crustal fusion or of assimilation plus fractional crystallization? Contrib Mineral Petrol 97460–471Google Scholar
  4. Beccaluva L, Gabbianelli G, Lucchini F, Rossi PL, Savelli C (1985) Petrology and K−Ar ages of volcanics dredged from the Eolian seamounts: implications for geodynamic evolution of the southern Tyrrhenian basin. Earth Planet Sci Lett 74:187–208Google Scholar
  5. Beccaluva L, Gabbianelli G, Lucchini F, Rossi PL, Savelli C, Zeda O (1981) Magmatic character and K/Ar ages of volcanics dredged from Eolian seamounts (Tyrrhenian Sea). In: Wezel FC (ed) Sedimentary basins of Mediterranean margins. Tecnoprint, Bologna, pp 361–368Google Scholar
  6. Beccaluva L, Bonatti E, Dupuy C, Ferrara G, Innocenti F, Lucchini F, Macera P, Petrini R, Rossi PL, Serri G, Seyler M, Siena F (1990) Geochemistry and mineralogy of volcanic rocks from ODP Sites 650, 651, 655, 654 in the Tyrrhenian sea Proceedings ODP Sci Res 107:49–74Google Scholar
  7. Caggianelli A, Del Moro A, Paglionico A, Piccarreta G, Pinarelli L, Rottura A (1991) Lower crustal granite genesis connected with chemical fractionation in the continental crust of Calabria (southern Italy). Eur J Mineral 3:159–180Google Scholar
  8. Carter SR, Civetta L (1977) Genetic implications of the isotope and trace element variations in the eastern Sicilian volcanics. Earth Planet Sci Lett 36:168–180Google Scholar
  9. Carter SR, Evensen NM, Hamilton PJ, O'Nions RK (1978) Continental volcanics derived from enriched and depleted source regions: Nd- and Sr-isotope evidence. Earth Planet Sci Lett 37:401–408Google Scholar
  10. Catanzaro EJ, Murphy WR, Shields WR, Garner EL (1968) Absolute isotopic ratios of common equal-atom and radiogenic lead isotopic standards. J Res Natl Bur Stand 72:261–267Google Scholar
  11. Cinque A, Civetta L, Orsi G, Peccerillo A (1988) Geology and geochemistry of the island of Ustica (southern Tyrrhenian Sea). Rend Soc Ital Mineral Petrol 43:987–1002Google Scholar
  12. Civetta L, Cornette Y, Crisci G, Gillot PY, Orsi G, Requejo CS (1984) Geology, geochronology and chemical evolution of the island of Pantelleria. Geol Mag 121:541–668Google Scholar
  13. Cortese M, Frazzetta G, La Volpe L (1986) Volcanic history of Lipari (Aeolian Islands, Italy) during the last 10 000 years. J Volcanol Geotherm Res 27:117–133Google Scholar
  14. Crisci GM and Hervig RL (1988) Geochemstry of multiple magma components in a single sample from Lipari, Aeolian Islands: implications for magma poly-mixing. EOS 69:1495Google Scholar
  15. Crisci GM, De Rosa R, Lanzafame G, Mazzuoli R, Sheridan MF, Zuffa GG (1981) Monte Guardia sequence: a late-Pleistocene eruptive cycle on Lipari (Italy). Bull Volcanol 44-3:241–255Google Scholar
  16. Crisci GM, Delibrias G, De Rosa R, Mazzuoli R, Sheridan MF (1983) Age and petrology of the late-Pleistocene brown tuffs on Lipari, Italy. Bull Volcanol 46-4:381–391Google Scholar
  17. Crisci GM, De Rosa R, Esperança S, Mazzuoli R, Sonnino M (1991) Temporal evolution of a three-component system: the island of Lipari (Aeolian Arc, south Italy). Bull Volcanol 53:207–221Google Scholar
  18. De Rosa R, Sheridan MF (1983) Evidence for magma mixing in the surge deposits of the Monte Guardia sequence: Lipari. J Volcanol Geotherm Res 17:313–328Google Scholar
  19. De Rosa R, Barberi F, Chelini W, Mazzuoli R (1986) Hydrovolcanism on Lipari Island (southern Italy): an example of magma-water interaction at shallow depth. GNV Bull 211–218Google Scholar
  20. De Rosa R, Gillot PY, Lanzafame G, Mazzuoli R (1985) The island of Lipari. IAVCEI Scientific Assembly Excursion GuidebookGoogle Scholar
  21. Del Moro A, Paglionico A, Piccarreta G, Rottura A (1986) Tectonic structure and post-Hercynian evolution of the Serre, Calabrian arc, southern Italy: geological, petrological and radiometric evidences. Tectonophysics 124:223–238Google Scholar
  22. Ellam RM, Hawkesworth CJ, Menzies MA, Rogers NW (1989) The volcanism of southern Italy: role of subduction and the relationship between potassic and sodic alkaline volcanism. J Geophys Res 94:4589–4601Google Scholar
  23. Ellam RM, Menzies MA, Hawkesworth CJ, Leeman WP, Rosi M, Serri G (1988) The transition from calc-alkaline to potassic orogenic magmatism in the Aeolian Islands, southern Italy. Bull Volcanol 50:386–398Google Scholar
  24. Ellam RM, Rogers NW (1988) Comment on “Mantle mixing and crustal contamination as the origin of the high-Sr radiogenic magmatism of Stromboli (Aeolian Arc)” by B. Luais. Earth Planet Sci Lett 91:239–243Google Scholar
  25. Esperança S, Carlson RW, Shirey SB (1988) Lower crustal evolution under central Arizona: Sr, Nd, Pb isotopic and geochemical evidence from the mafic xenoliths from Camp Creek. Earth Planet Sci Lett 90:26–40Google Scholar
  26. Faraone D, Silvano A, Verdiani G (1986) The monozogabbroic intrusion in the island of Vulcano, Aeolian archipelago, Italy. Bull Volcanol 48:299–307Google Scholar
  27. Francalanci L, Barbieri M, Manetti P, Peccerillo A, Tolomeo L (1988) Sr isotopic systematics in volcanic rocks from the island of Stromboli, Italy (Aeolian Arc). Chem Geol Isot Geos 73:109–124Google Scholar
  28. Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Rend Soc Ital Mineral Petrol 31 (2):365–378Google Scholar
  29. Frazzetta G, La Volpe L, Sheridan MF (1983) Evolution of the Fossa cone, Vulcano. J Volcanol Geothermal Res 17:329–360Google Scholar
  30. Gasparini C, Iannaccone G, Scandone P, Scarpa R (1982) Seismotectonics of the Calabrian Arc. Tectonophysics 84:267–286Google Scholar
  31. Gillot PY (1987) Histoire volcanique des Iles Eoliennes: arc insulaire ou complexe orogenique annulaire? Doc Trav IGAL 11:35–42Google Scholar
  32. Gillot PY, Villari L (1980) K/Ar geochronological data on the Aeolian arc volcanism — a preliminary report. CNR, Inst Int Volcanol Open File Report 145:1–13Google Scholar
  33. Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from Italian volcanics. Contrib Mineral Petrol 69:151–165Google Scholar
  34. Horvath F, Berckhemer H, Stegena L (1981) Models of Mediterranean back-arc basin formation. Philos Trans R Soc London A300:383–402Google Scholar
  35. Keller J (1980a) The island of Salina. Rend Soc Ital Mineral Petrol 36 (1):489–524Google Scholar
  36. Keller I (1980b) The island of Vulcano. Rend Soc Ital Mineral Petrol 36 (1):369–414Google Scholar
  37. Le Bas MJ, Le Maitre RW, Streickeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on total alkalisilica diagram. J Petrol 27:745–750Google Scholar
  38. Leoni L, Saitta M (1974) X-Ray fluorescence analysis of powder pellets utilizing a small quantity of material. Rend Soc Ital Mineral Petrol 3:74–77Google Scholar
  39. Locardi E, Nicolich R (1991) Geodinamica del Tirreno e dell'Appennino Centro-Meridionale: La nuova carta della Moho. Mem Soc Geol Ital (in press)Google Scholar
  40. Luais (1988) Mantle mixing and crustal contamination as the origin of the high-Sr radiogenic magmatism of STromboli (Aeolian arc). Earth Planet Sci Lett 88:93–106Google Scholar
  41. Luais B (1989) Mantle mixing and crustal contamination as the origin of the high-Sr radiogenic magmatism of Stromboli (Aeolian arc) — reply to a comment by RM Elam and NW Rogers. Earth Planet Sci Lett 89:411–416Google Scholar
  42. Maccarrone E, Paglionico A, Piccarreta G, Rottura A (1983) Geochemical features of the granulite-amphibolite facies metasediments from the Serre (Calabria, southern Italy): their protoliths and the processes controlling their chemistry. Lithos 16:95–111Google Scholar
  43. Peccerillo A, Gurrieri S, Carnesecchi F, Francalanci L (1988) Genesi ed evoluzione dei magmi eoliani: dati sul vulcano di Alicudi. GNV Bull 4:443–456Google Scholar
  44. Pichler H (1980) The island of Lipari. Rend Soc Ital Mineral Petrol 36 (1):415–440Google Scholar
  45. Rosi M (1980) The island of Stromboli. Rend Soc Ital Mineral Petrol 36 (1):345–368Google Scholar
  46. Santo A, Fracalanci L (1988) L'isola di Filicudi: dati petrologici e geochimici. GNV Bull 4:538–559Google Scholar
  47. Schenk V (1980) U−Pb and Rb−Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, southern Calabria (Italy). Contrib Mineral Petrol 73:23–38Google Scholar
  48. Selli R (1985) Tectonic evolution of the Tyrrhenian Sea. In: Stanley DJ, Wezel FC (eds) Geological evolution of the Mediterranean basin. Springer, New York Berlin Heidelberg, pp 131–151Google Scholar
  49. Sheridan MF, Frazzetta G, La Volpe L (1987) Eruptive histories of Lipari and Vulcano, Italy, during the past 22 000 years. In: Fink JH (ed) The emplacement of silicic domes and lava flows. GSA Special Paper 212, 29–34Google Scholar
  50. Villari L (1980a) The island of Filicudi. Rend Soc Ital Mineral Petrol 36:467–488Google Scholar
  51. Villari L (1980b) The island of Alicudi. Rend Soc Ital Mineral Petrol 36:441–466Google Scholar
  52. Vollmer R, Hawkesworth CJ (1980) Lead isotopic composition of the potassic rocks from Roccamonfina (south Italy). Earth Planet Sci Lett 47:91–101Google Scholar
  53. Wang CY, Hwang WT, Shi Y (1989) Thermal evolution of a rift basin: the Tyrrhenian Sea. J Geophys Res 94:3991–4006Google Scholar
  54. Wezel FC (1985) Structural features and basin tectonics of the Tyrrhenian Sea. In: Stanley DJ, Wezel FC (eds) Geoligical evolution of the Mediterranean basin. Springer, New York Berlin Heidelberg, pp 153–194Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • S. Esperança
    • 1
  • G. M. Crisci
    • 2
  • R. de Rosa
    • 2
  • R. Mazzuoli
    • 2
  1. 1.Faculty of Applíed SciencesDeakin University-RusdenClaytonAustralia
  2. 2.Dipartimento Scienze della TerraUniversità degli Studi della CalabriaArcavacata-RendeItaly

Personalised recommendations