Advertisement

Contributions to Mineralogy and Petrology

, Volume 110, Issue 2–3, pp 226–241 | Cite as

Eclogite-facies rocks in the Saxonian Erzgebirge, Germany: high pressure metamorphism under contrasting P-T conditions

  • Esther Schmädicke
  • Martin Okrusch
  • Wolfgang Schmidt
Article

Abstract

The metamorphic sequences of the Saxonian Erzgebirge were thoroughly overprinted by a Variscan medium-pressure event under amphibolite facies conditions. However, eclogitic relics documenting an older high-pressure event are widespread. P-T conditions of the eclogite-facies metamorphism systematically decrease, over a distance of 50 km, from about >29 kbar/850°C, in the central part, to 20–24 kbar/650°C, in the westernmost part of the Erzgebirge crystalline complex. A distinct gap in P-T conditions exists between the central and the western Erzgebirge coinciding with the fault zone of the Flöha syncline. Therefore, the eclogitebearing sequences are assumed to represent at least two different nappe units. The lower-grade eclogite assemblages in the western Erzgebirge display a continuous metamorphic zonation with a gradual decrease of peak metamorphic temperatures towards the west. Assemblages formed in the stability field of coesite and thus indicating a regional ultra-high pressure metamorphism, are restricted to the central Erzgebirge, where they are widespread in the eclogites, but also present in metaacidic country rocks. The same high-temperature/high-pressure conditions, testifying to a burial of at least 100 km, were independently recorded for the ultramafic garnet pyroxenites associated with the eclogites of the central Erzgebirge. Mineral relics included in the eclogite phases and mineral assemblages formed by retrograde reactions permit reconstruction of the prograde and retrograde P-T paths in the different parts of the Erzgebirge crystalline complex.

Keywords

Fault Zone Burial Metamorphic Temperature Metamorphic Zonation Pressure Metamorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakun-Czubarow N (1981) Ultrabasic rocks in granulites of the Gory Sowie Mts Block. In: Narebski W (ed) Ophiolites and initialites of the northern border of the Bohemian Massif —Guide book of excursions, part II. Potsdam, pp 79–86Google Scholar
  2. Bautsch HJ (1962) Über die p-t-x Bedingungen der Eklogitfazies. Ber Geol Ges DDR 6:33–36Google Scholar
  3. Behr HJ, Fritsch E, Mansfeld L (1965) Die Granulite von Zöblitz im Erzgebirge als Beispiel für Granulitbildung in tiefreichenden Scherhorizonten. Krystalinikum 3:7–29Google Scholar
  4. Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224Google Scholar
  5. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378Google Scholar
  6. Brey GP, Nickel KG, Kogarko L (1986) Garnet-pyroxene equilibria in the system CaO-MgO-Al2O3-SiO2 (CMAS): prospects for simplified (‘T-independent’) lherzolite barometry and an eclogite-barometer. Contrib Mineral Petrol 92:448–455Google Scholar
  7. Bröcker M (1990) Die metamorphe vulkanosedimentäre Abfolge der Insel Tinos (Kykladen, Griechenland)-Geologie, Petrographie und Mineralchemie einer grünschieferfaziell überprägten Hochdruck-/Niedrigtemperatur-Abfolge. Geotekton Forsch 74, pp 98Google Scholar
  8. Carswell DA, Harley SL (1990) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow London, pp 83–110Google Scholar
  9. Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118Google Scholar
  10. Chopin C (1987) Very-high-pressure metamorphism in the western Alps: implications for subduction of continental crust. Phil Trans R Soc Lond A 321:183–197Google Scholar
  11. Coleman RG, Lee DE, Beatry LB, Brannock WW (1965) Eclogites and eclogites their differences and similarities. Geol Soc Am Bull 76:483–508Google Scholar
  12. Dawson JB, Carswell DA (1990) High-temperature and ultra-high pressure eclogites. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow London, pp 315–349Google Scholar
  13. Düll E (1902) Über die Eklogite des Münchberger Gneisgebietes. Ein Beitrag zur Kenntnis ihrer genetischen Verhältnisse. Dr phil thesis Univ Erlangen, 92 pp, MünchenGoogle Scholar
  14. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71:13–22Google Scholar
  15. Enami M, Zang Q (1990) Quartz pseudomorphs after coesite in eclogites from Shandong province, east China. Am Mineral 74:381–386Google Scholar
  16. England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism I: heat transfer during the evolution of the thickened continental crust. J Petrol 25:894–928Google Scholar
  17. Evans BW, Patrick B (1987) Phengite-3T in high-pressure granitic orthogneisses, Seward peninsula, Alaska. Can Mineral 25:141–158Google Scholar
  18. Ferry JM, Spear FS (1978) Experimental calibration of partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117Google Scholar
  19. Fiala J (1966) The distribution of elements in mineral phases of some garnet lherzolites from the Bohemian Massif. Krystalinikum 4:31–53Google Scholar
  20. Finnerty AA, Boyd FR (1987) Thermobarometry for garnet peridotites: basis for the determination of thermal and compositional structure of the upper mantle. In: Nixon PH (ed) Mantle xenoliths. John Wiley and Sons, Chichester, pp 381–402Google Scholar
  21. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am, Spe Pap 230:67–90Google Scholar
  22. Franz G, Thomas S, Smith DC (1986) High-pressure phengite decomposition in the Weissenstein eclogite, Münchberger Gneiss Massif, Germany. Contrib Mineral Petrol 92:71–85Google Scholar
  23. Franz L (1991) Geologische, geochemische and petrologische Untersuchungen an präalpidischen Metamorphiten der Insel Kreta und des Dodekanes (Griechenland). Dr rer nat thesis Univ Würzburg, pp 388Google Scholar
  24. Frischbutter A (1990) Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen Antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. Veröffentl Zentralinst Physik Erde, Potsdam 69, pp 153Google Scholar
  25. Ghent ED (1976) Plagioclase-garnet-Al2SiO5-quartz: A potential geobarometer-geothermometer. Am Mineral 61:710–714Google Scholar
  26. Godard G (1988) Petrology of some eclogites in the Hercynides: the eclogites from the Southern Armorican Massif. France. In: Smith DC (ed) Eclogites and eclogite-facies rocks. Elsevier, Amsterdam, pp 451–519Google Scholar
  27. Graham CM, Powell R (1984) A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. J Metamorphic Geol 2:13–31Google Scholar
  28. Green TH, Hellmann PL (1982) Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos 15:253–266Google Scholar
  29. Harley SL (1984a) The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al2O3-SiO2. J Petrol 25:665–696Google Scholar
  30. Harley SL (1984b) Comparison of the garnet-orthopyroxene geobarometer with recent experimental studies, and applications to natural assemblages. J Petrol 25:697–712Google Scholar
  31. Harley SL (1984c) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373Google Scholar
  32. Hodges KV, Spear FS (1981) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Am Mineral 67:1118–1134Google Scholar
  33. Holdaway MJ (1971) Stability of andalusite and the aluminiumsilicate phase diagram. Am J Sci 271:97–131Google Scholar
  34. Holland TJB (1979) Experimental determination of the reaction paragonite=jadeite+kyanite+H2O, and internally consistent thermodynamic data for part of the system Na2O-Al2O3-SiO2-H2O, with applications to eclogites and blueschists. Contrib Mineral Petrol 68:293–301Google Scholar
  35. Holland TJB (1980) The reaction albite=jadeite+quartz determined experimentally in the range 600–1200°C. Am Mineral 65:129–134Google Scholar
  36. Hoth K, Lorenz W, Hirschmann G, Berger HJ (1979) Lithostratigraphische Gliederungsmöglichkeiten regionalmetamorphen Jungproterozoikums am Beispiel des Erzgebirges. Z Geol Wiss 7:397–404Google Scholar
  37. Jenkins DM (1984) Upper-pressure stability of synthetic margarite plus quartz. Contrib Mineral Petrol 88:332–339Google Scholar
  38. Joanny V, Van Roermund H, Lardeaux JM (1991) The clinopyroxene/plagioclase symplectite in retrograde eclogites: a potential geothermobarometer. Geol Rundsch 80:303–320Google Scholar
  39. Klápová H (1990) Eclogites of the Bohemian part of the Saxothuringicum. Rozpr Cesk Akad Ved, Rada Mate Prir Ved 100(5):1–86Google Scholar
  40. Klemd R, Matthes S, Okrusch M (1991) High-pressure relics in meta-sediments intercalated with the Weissenstein eclogite, Münchberg gneiss complex, Bavaria. Contrib Mineral Petrol 107:328–342Google Scholar
  41. Kohn MJ, Spear FS (1989) Empirical calibration of geobarometers for the assemblage garnet+hornblende+plagioclase+quartz. Am Mineral 74:77–84Google Scholar
  42. Kohn MJ, Spear FS (1990) Two new geobarometers for garnet amphibolites, with application to southeastern Vermont. Am Mineral 75:89–96Google Scholar
  43. Koons PO, Thompson AB (1985) Non-mafic rocks in the greenschist, blueschist and eclogite-facies. Chem Geol 50:3–30Google Scholar
  44. Krentz O (1982) Zum Charakter der Metamorphose und zur Altersstellung pelitischer Metamorphite des westlichen Erzgebirges. Dr rer nat thesis Bergakademie Freiberg, pp 176Google Scholar
  45. Krentz O, Thomas R, Wiedemann R (1990) Aussagen zur Regionalmetamorphose des mittleren und westlichen Erzgebirges mit Hilfe thermobarometrischer Einschlußuntersuchungen. Z Geol Wiss 18:315–326Google Scholar
  46. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  47. Krogh EJ (1988) The garnet-clinopyroxene Mg-Fe geothermometer — a reinterpretation of existing experimental data. Contrib Mineral Petrol 99:44–48Google Scholar
  48. Lardeaux JM, Gosso G, Kienast JR, Lombardo B (1983) Chemical variations in phengitic micas of successive foliations within the eclogitic micaschists complex, Sesia-Lanzo Zone (Italy, western Alps). Bull Minéral 106:673–689Google Scholar
  49. Leake BE (1978) Nomenclature of amphiboles. Am Mineral 63:1023–1052Google Scholar
  50. Mathé G (1990) Zur Geologie der Serpentinitvorkommen im sächsischen Erzgebirge. Abh Staatl Museum Geol Dresden 37:55–72Google Scholar
  51. Matthes S, Richter P, Schmidt K (1975) Die Eklogitvorkommen des kristallinen Grundgebirges in NE-Bayern. IX. Petrographie, Geochemie und Petrogenese der Eklogite des Münchberger Gneisgebietes. Neues Jahrb Mineral Abhandl 126:45–86Google Scholar
  52. Mirwald PW, Massonne HJ (1980) The low-high quartz and quartz-coesite transition to 40 kbar between 600°C and 1600°C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition. J Geophys Res 85:6983–6990Google Scholar
  53. Mottana A, Carswell DA, Chopin C, Oberhänsli R (1990) Eclogite facies mineral parageneses. In: Carlswell DA (ed) Eclogite facies rocks. Blackie, Glasgow London, pp 14–52Google Scholar
  54. Newton RC, Haselton HT (1981) Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Springer, New York Berlin Heidelberg Tokyo, pp 131–145Google Scholar
  55. O'Brien PJ (1991a) A multistage metamorphic evolution in eclogites from the Mariánské Lázné Complex, NW Bohemia, Czechoslovakia: the implications for uplift mechanisms. Terra Abstracts 3:93Google Scholar
  56. O'Brien PJ (1991b) High pressure metamorphism in the NW Bohemian Massif: comparisons and contrasts between the Moldanubian Zone, Münchberg Massif, ZEV, ZTT and Erzgebirge. KTB Report 91-1:1–12Google Scholar
  57. O'Brien PJ, Carswell DA, Gebauer D (1990) Eclogite formation and distribution in the European Variscides. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow London, pp 204–224Google Scholar
  58. Okay OI, Shutong X, Sengör AMC (1989) Coesite from the Dabie Shan eclogites, central China. Eur J Mineral 1:595–598Google Scholar
  59. Okrusch M, Matthes S, Klemd R, O'Brien BJ, Schmidt K (1991) Eclogites at the northwestern margin of the Bohemian Massif: a review. Eur J Mineral 3:707–730Google Scholar
  60. Pin C, Vielzeuf D (1983) Granulites and related rocks in Variscan Median Europe: a dualistic interpretation. Tectonophysics 93:47–74Google Scholar
  61. Pin C, Vielzeuf D (1988) Le granulites de haute-pression d'Europe moyenne témoins d'une subduction éo-hercynienne. Implications sur l'origine des groupes leptyno-amphiboliques. Bull Soc Géol France 8:13–20Google Scholar
  62. Platt JP (1987) The uplift of high pressure — low temperature rocks. Philos Trans R Soc London Ser A 321:87–103Google Scholar
  63. Putlitz B, Halsband N, Franz G (1991) High-pressure deformation zones in metagranites, Tauern, Austria. Terra Abstracts 3:92Google Scholar
  64. Reinisch R (1929) Erläuterungen zur Geologischen Karte von Sachsen im Maßstab 1:25000, Nr. 129 Blatt Zöblitz, II. Auflage, 65 pp, LeipzigGoogle Scholar
  65. Rubie DC (1990) Role of kinetics in the formation and preservation of eclogites. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow London, pp 111–140Google Scholar
  66. Scharbert HG, Carswell DA (1983) Petrology of garnet-clinopyroxene rocks in a granulite facies environment, Bohemian massif of Lower Austria. Bull Minéral 106:761–774Google Scholar
  67. Schmädicke E (1991) Quartz pseudomorphs after coesite in eclogites from the Saxonian Erzgebirge. Eur J Mineral 3:231–238Google Scholar
  68. Schreyer W (1988) Experimental studies on metamorphism of crustal rocks under mantle pressures. Min Mag 52:1–26Google Scholar
  69. Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644Google Scholar
  70. Smith DC (1988) A review of the perculiar mineralogy of the “Norwegian coesite-eclogite province”, with crystal chemical, petrological, geochemical and geodynamical notes and an extensive bibliography. In: Smith DC (ed) Eclogites and eclogite-facies rocks. Elsevier, Amsterdam, pp 1–206Google Scholar
  71. Stosch HG, Lugmair GW (1990) Geochemistry and evolution of MORB-type eclogites from the Münchberg Massif, southern Germany. Earth Planet Sci Lett 99:230–249Google Scholar
  72. Wang X, Liou JG, Mao HK (1989) Coesite-bearing eclogite from the Dabie Mountain in Central China. Geology 17:1085–1088Google Scholar
  73. Werner CD (1981) Saxonian Erzgebirge Mountains: Excursion points in the Erzgebirge Mountains. In: Kramer W, Werner CD (eds) Ophiolites and initialites on the northern border of the Bohemian Massif — Guide book of excursions. Potsdam, pp 163–166Google Scholar
  74. Werner CD, Kononkova NN (1989) Eclogites in the Erzgebirge Mountains. In: Kramer W, Werner CD (eds) Prevariscan mafic rocks in the Saxothuringian zone. Potsdam, pp 58–63Google Scholar
  75. Yang Y, Smith DC (1989) Evidence for a former sanidine-coesite eclogite at Lanshantou, eastern China, and the recognition of the Chinese “Lu-Su coesite eclogite province”. Terra Abstracts 1:26Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Esther Schmädicke
    • 1
    • 2
  • Martin Okrusch
    • 1
  • Wolfgang Schmidt
    • 2
  1. 1.Mineralogisches InstitutUniversität WürzburgWürzburgFRG
  2. 2.Institut für Mineralogie, Geochemie und LagerstättenlehreBergakademie FreibergFreibergFRG

Personalised recommendations