Contributions to Mineralogy and Petrology

, Volume 118, Issue 1, pp 13–32 | Cite as

Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria

  • C. Vellmer
  • K. H. Wedepohl


Major and 31 minor elements have been determined in 39 large samples of Variscan granitoids from 6 plutons or intrusions from the South Bohemian Batholith (Rastenberg, Weinsberg, Mauthausen, Schrems, Eisgarn and Gebharts). The granitoids are mainly granites but also diorites, tonalites, trondhjemites, granodiorites. Average concentrations of Ba, Th, U, La, Ce, Pb, Nd, Sr and K in the Weinsberg, Mauthausen and Schrems granites exceed those in average felsic I- and S-type granites by factors ranging between 2.1 and 1.3. The granites melts formed at waterundersaturated conditions and intruded at 10 to 15 km depth during late-tectonic and post-tectonic phases of the Variscan orogeny (about 330 to 300 Ma ago). Hydrothermal or low temperature alteration is excluded for the majority of samples from a study of oxygen isotopes. The thickness of the plutons is estimated at about 6 km from heat balance constraints. By analogy with experimental partial melting, three different sources of the granitoids can be identified and chemically characterized: (1) The trondhjemites, tonalites and diorites in the early Rastenberg pluton are products of 15 to 40% melting respectively of a mafic (partly amphibolitic) lower crust. Redwitzites from the West Bohemian Massif which are comparable in age partly resemble the Rastenberg rocks. The mafic sources of the Rastenberg granitoids and redwitzites are crustally contaminated as reflected in their Sr-Nd isotopes. (2) The very large syn-tectonic Weinsberg pluton was formed from about 30% partial melting of a tonalitic lower crust at 800 to 850°C. Its low proportion of ca. 10% restite has a ferrodioritic composition. The post-tectonic fine-grained Mauthausen and Schrems granites which tend to a granodioritic mode, are very low in restite and are also products of melting of a tonalitic source. (3) The youngest (leuco-)granite, the Eisgarn pluton (high in Si, P, Li, Rb, Cs, U,87Sr/86Sr and low in Ca, Sr, Ba) reflects a pelitic source. The change from mafic to tonalitic to pelitic source composition for the granitoid sequence may indicate that the depth of melt formation decreased with time. The concentration of heavy rare earth elements decreased from Weinsberg to Eisgarn granites which indicates an increasing proportion of garnet in the source. The orogenic heat conformable with a heat flow of about 100 mWm-2 was provided by mafic intrusions. An alternative would be a drastic increase of the crustal thickness which cannot be recognized by barometry of the associated metamorphic rocks. Exposed metamorphic country rocks occur in higher amphibolite facies indicating about 5 kbar pressure. Mafic intrusions contain gabbros (Kleinzwettl) or have formed (quartz-)diorites (Gebharts), the latter being contaminated by granitic melts from partial melting of the wall rocks (MASH process). Largescale contamination by crustal materials can be observed in δ18O and in Sr-Nd isotopes. The major mafic activity was probably caused by depression of solidus temperatures in the mantle wedge above a subduction zone where water was available from dehydration of subducted ocean crust. This water initiated partial melting of ultramafic rocks and metasomatism in the uppermost mantle above the level of melting. The water also mobilized highly incompatible elements (Ba, Th, U, La, Ce, Pb, Nd, Sr and K) from the uppermost mantle and transported them into the lower crust. Indicators of a nearby subduction or collision zone of Late Variscan age in addition to the specific association of granitoidal rocks are abundant upper mantle tectonites. An alternate or additional source of metasomatic fluids may have been dehydration of lower crustal rocks during Variscan high-grade metamorphism.


Partial Melting Lower Crust Bohemian Massif Uppermost Mantle Mafic Intrusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atherton MP, McCourt WJ, Sanderson LM, Taylor WP (1979) The geochemical character of the segmented Peruvian coastal batholith and associated volcanics. In: Atherton MP, Tarney J (eds) Origin of granite batholiths: geochemical evidence. Shiva, Orpington, pp 45–64Google Scholar
  2. Barker F, Millard HT (1979) Geochemistry of the type trondhjemite and three associated rocks, Norway. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 517–529Google Scholar
  3. Ben Othman D, Polve M, Allegre CJ (1984) Nd-Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. Nature 307:510–515Google Scholar
  4. Blümel P (1990a) Metamorphism along the SW margin of the Bohemian Massif—An overview. In: Franke W (ed) Paleozoic orogens in Central Europe — geology and gergophysics. (Field guide to Bohemian Massif). IGCP 233, pp 65–75Google Scholar
  5. Blümel P (1990b) Variscan syn- and post-tectonic magmatism. In: Franke W (ed) Paleozoic orogens in Central Europe-geology and geophysics. Field guide to Bohemian Massif, IGCP 233, pp 37–47Google Scholar
  6. Büsch W, Matthes S, Mehnert KR, Schubert W (1980) Zur genetischen Deutung der Kinzigite im Schwarzwald und Odenwald. Neues Jahrb Mineral Abh 137:223–256Google Scholar
  7. Carswell (1991) Variscan highP-T metamorphism and uplift history in the Moldanubian zone of the Bohemian Massif in Lower Austria. Eur J Mineral 3:323–342Google Scholar
  8. Carswell DA, Möller C, O'Brien PJ (1989) Origin of sapphirineplagioclase symplectites in metabasites from Mitterbachgraben, Dunkelsteiner Wald granulite complex, Lower Austria. Eur J Mineral 1:455–466Google Scholar
  9. Cermak V (1977) Geothermal models of the Bohemian Massif (Variscan) and the western Carpathiens (Alpine) and their mutual relation. Tectonophysics 41:127–137Google Scholar
  10. Chappell BW, White AJR (1974) Two contrasting granite types. Paci Geol 8:173–174Google Scholar
  11. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306Google Scholar
  12. Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in mineralogy, vol 16), Mineral Soc Am, Washington, DCGoogle Scholar
  13. Cruden AR (1990) Flow and fabric development during the diapiric rise of magma. J Geol 98:681–698Google Scholar
  14. Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans Soc Edinburgh Earth Sci 73:135–149Google Scholar
  15. DePaolo DJ (1981a) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202Google Scholar
  16. DePaolo DJ (1981b) A neodymium and strontium isotopic study of the Mesozoic calcalkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J Geophys Res 86: B11:10470–10488Google Scholar
  17. Downes H, Duthou JL (1988) Isotopic and trace-clement arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem Geol 68:291–308Google Scholar
  18. Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Coutrib Mineral Petrol 106:286–295Google Scholar
  19. Ellenberger F, Tamain ALG (1980) Hercynian Europe. Episodes 1980:22–27Google Scholar
  20. Evensen MN (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212Google Scholar
  21. Finger F, Höck V (1987) Zur magmatischen Entwicklung des Moldanubikums in Oberösterreich. Jahrb Geol BA Wien 129:641–642Google Scholar
  22. Frasl G, Finger F (1988) Führer zur Exkursion der Österreichischen Geologischen Gesellschaft ins Mühlviertel und in den Sauwald am 22. und 23. September 1988. Reihe Exkursionsführer Österr Geol GesGoogle Scholar
  23. Frasl G, Finger F (1991) Geologisch-petrographische Exkursion in den österrcichischen Teil des Südböhmischen Batholiths. Eur J Mineral (Beih 2) 3:23–40Google Scholar
  24. Friedel G, von Quadt A, Finger F (1992) Erste Ergebnisse von U/Pb Altersdatierungsarbeiten am Rastenberger Granodiorit im niederösterreichischen Waldviertel. Mitt Österr Mineral Ges 137:131–134Google Scholar
  25. Friedel G, von Quadt A, Ochsner A, Finger F (1993) Timing of the Variscan orogeny in the southern Bohemian Massif (NE-Austria) deduced from new U-Pb zircon and monazite dating. Terra Abstr 1:235Google Scholar
  26. Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jahrb Geol BA Wien 119:45–61Google Scholar
  27. Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jahrb Geol BA 119:1–43Google Scholar
  28. Goldstein SL, O'Nions RK, Hamilton PJ (1984) A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236Google Scholar
  29. Haack U (1982) Radioactivity of rocks. In: Angenheister G (ed) Physical properties of rocks. (Landolt-Börnstein: Numerical data and functional relationships in science and technology — new series). Springer, Berlin Heidelberg New York, pp 433–481Google Scholar
  30. Haunschmid B (1988) Das Granitgebiet um Plochwald zwischen Sandl und Windhaag im nordöstlichen Oberösterreich mit besonderer Berücksichtigung des dortigen Plochwalder Granit-Typs und des Pseudokinzigits. Dipl thesis, Uni SalzburgGoogle Scholar
  31. Helz RT (1973) Phase relations of basalts in their melting range atPH2O=5 kbar as a function of oxygen fugacity. II. Melt compositions. J Petrol 14:249–302Google Scholar
  32. Helz RT (1976) Phase relations of basalts in their melting range atPH2O=5 kbar as a function of oxygen fugacity. II. Melt compositions. J Petrol 17:139–193Google Scholar
  33. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489Google Scholar
  34. Hoefs J (1987) Stable isotope geochemistry. 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314Google Scholar
  36. Holl PK, v. Drach V, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb-Sr and Sm-Nd isotopic variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194Google Scholar
  37. Holtz F, Johannes W (1991) Genesis of peraluminous granites. I. Experimental investigation of melt compositions at 3 and 5 kbar and various water activities. J Petrol 32:935–958Google Scholar
  38. Huang WL, Wyllie PJ (1973) Melting reactions of a muscovitegranite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol 42:1–14Google Scholar
  39. Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624Google Scholar
  40. Johannes W, Holtz F (1990) Formation and composition of H2O-undersaturated granitic melts. In: Ashworth JR, Brown M (eds) High temperature metamorphism and crustal anatexis. Unwin and Hyman, London, pp 87–104Google Scholar
  41. Johnston AD, Wyllie PJ (1988) Constraints on the origin of Archean trondhjemites based on phase relationships of Nuk gneiss with H2O at 15 kbar. Contrib Mineral Petrol 100:35–46Google Scholar
  42. Klob H (1971) Der Freistädter Granodiorit im östlichen Moldanubikum. Verh Geol BA 1971:98–142Google Scholar
  43. Kober L (1938) Der gcologische Aufbau Österreichs. Springer, ViennaGoogle Scholar
  44. Koller F (1992) Die Granite im nördlichen Waldviertel-ein Statusbericht aus einem laufenden Forschungsprojekt. Mitt Östcrr Mineral Ges 137:158–160Google Scholar
  45. Koller F, Niedermayr G (1981) Die Petrologie der Diorite im nördlichen Waldviertel, Niederösterreich. Tschermaks Mineral Petrol Mitt 28:285–313Google Scholar
  46. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh Sächs Geol LA 1:39Google Scholar
  47. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266Google Scholar
  48. Kurat G (1965) Der Weinsberger Granit im südlichen österreichischen Moldanubikum. Tschermaks Mineral Patrol Mitt 9:202–227Google Scholar
  49. Kushiro (1982) Density of tholeiite and alkali basalt magmas at high pressures. Annu Rep Dir Geophys Lab Washington Yearb 81:305–309Google Scholar
  50. LeMaitre RW (1976) The chemical variability of some common igneous rocks. J Petrol 17:589–637Google Scholar
  51. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138Google Scholar
  52. Liew TC, McCulloch MT (1985) Genesis of granitoid batholiths of Peninsular Malaysia and implications for models of crustal evolution: evidence from a Nd-Sr isotopic and U-Pb zircon study. Geochim Cosmochim Acta 49:587–600Google Scholar
  53. Liew TC, Finger F, Höck V (1989) The Moldanubian granitoid plutons of Austria: chemical and isotopic studies bearing on their cnvironmental setting. Chem Geol 76:41–55Google Scholar
  54. Matura (1976) Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südwestmähren und dem niederösterreichischen Waldviertel. Jahrb Geol BA 119:63–74Google Scholar
  55. McBirney AR, Murase T (1984) Rheological properties of magmas. Annu Rev Earth Planet Sci 12:337–357Google Scholar
  56. McCulloch MT, Chappell BW (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet Sci Lett 58:51–64Google Scholar
  57. McDonough WF, Sun SS, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmochim Acta 56:1001–1012Google Scholar
  58. Miller CF, Watson EB, Harrison TM (1988) Perspectives on the source, segregation and transport of granitoid magmas. Trans R Soc Edinburgh Earth Sci 79:135–156Google Scholar
  59. Moore JG (1959) The quartzdiorite boundary line in the western United States. J Geol 67:198–210Google Scholar
  60. Petrakakis K (1986) Metamorphism of high grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets. J Metamorphic Geol 4:323–344Google Scholar
  61. Pitcher WS (1979) Comments on the geological environment of granites. In: Atherton MP, Tarney J (eds) Origin of granite batholiths. geochemical evidence. Shiva, Orpington, pp 1–8Google Scholar
  62. Pitcher WS, Atherton MP, Cobbing EJ, Beckinsale RD (eds) (1985) Magmatism at a plate edge: the Peruvian Andes. Wiley, New YorkGoogle Scholar
  63. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296Google Scholar
  64. Puziewicz J, Johannes W (1990) Experimental study of a biotitebearing granitic system under water-saturated and water-under-saturated conditions. Contrib Mineral Petrol 104:397–406Google Scholar
  65. von Quadt A, Finger F (1991) Geochronologische Untersuchungen im österreichischen Teil des Südböhmischen Batholiths: U-Pb Datierungen an Zirkonen, Monaziten und Xenothimen des Weinsberger Granits. Eur J Mineral (Beih 1) 3:281Google Scholar
  66. Rudnick RL, Presper T (1990) Geochemistry of intermediate- to high-pressure granulites. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. (NATO ASI Series) Kluwer Academic Publ, Amsterdam, pp 523–550Google Scholar
  67. Rudnick RL, Taylor SR (1986) Geochemical constraints on the origin of Archean tonalitic-trondhjemitic rocks and implication for lower crustal composition. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust. Geol Soc Spec Publ 24, pp 309–317Google Scholar
  68. Rushmer T (1991) Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59Google Scholar
  69. Rybach L (1976) Radioactive heat production: a physical property determined by the chemistry of rocks. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. Wiley and Sons, London, pp 309–318Google Scholar
  70. Scharbert HG, Carswell DA (1983) Petrology of garnet-clinopyroxene rocks in a granulite facies environment, Bohemian Massif of Lower Austria. Bull Mineral 106:761–774Google Scholar
  71. Scharbert HG, Fuchs G (1981) Metamorphe Serien im Moldanubikum Niederösterreichs. Fortschr Mineral (Beih 2) 59:129–152Google Scholar
  72. Scharbert S (1966) Mineralbestand und Genesis des Eisgarner Granits in niederösterreichischen Waldviertel. Tschermaks Mineral Petrol Mitt 11:338–412Google Scholar
  73. Scharbert S (1987) Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Österreich. Mitt Österr Mineral Ges 132:21–37Google Scholar
  74. Scharbert S (1988) Rb-Sr systematics of granitoid rocks of South Bohemian Pluton. In: Kukal Z (ed) Proceedings of the 1st International Conference on the Bohemian Massif. Czech Geol Surv Prague, pp 229–232Google Scholar
  75. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243Google Scholar
  76. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in mineralogy 16), Mineral Soc of Am, Washington, DCGoogle Scholar
  77. Simon K, Hoefs J (1993) O, H, C isotope study of rocks from the KTB pilot hole: crustal profile and constraints on fluid evolution. Contrib Mineral Petrol 114:42–52Google Scholar
  78. Springer W (1992) Entstehung granitoider Magmen durch partielle Aufschmelzung basischer Unterkruste: eine experimentelle Studie. Dr. Diss, KölnGoogle Scholar
  79. Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite+quartz in the system K2O-Al2O3-SiO2-H2O to 20 kbar water pressure. Contrib Mineral Petrol 36:343–345Google Scholar
  80. Streckeisen A (1967) Classification and nomenclature of igneous rocks. Neues Jahrb Mineral Abh 107:144–214Google Scholar
  81. Taylor HP (1988) Oxygen, hydrogen, and strontium isotope constraints on the origin of granites. Trans R Soc Edinburgh, Earth Sci 79:317–338Google Scholar
  82. Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in mineralogy 16) Mineral Soc of Am, Washington, DCGoogle Scholar
  83. Thiele O (1976) Ein westvergenter kaledonischer Deckenbau im niederösterreichischen Waldviertel? Jahrb Geol BA Wien 119:75–81Google Scholar
  84. Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595Google Scholar
  85. Tollmann A (1982) Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forsch 64:1–61Google Scholar
  86. Troll G (1968) Gliederung der redwitzitischen Gesteine Bayerns nach Stoff-und Gefügemerkmalen. I. Die Typlokalitäten von Marktredwitz in Oberfranken. Abh Bayer Akad Wiss Math Naturwiss 158 K1 NF 133:1–86Google Scholar
  87. Turpin L, Cuney M, Friedrich M, Bouchez J, Aubertin M (1990) Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contrib Mineral Petrol 104:163–172Google Scholar
  88. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74Google Scholar
  89. van Breemen O, Aftalion M, Bowes DR, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bochemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinburgh Earth Sci 73:89–108Google Scholar
  90. Vellmer C (1992) Stoffbestand und Petrogenese von Granuliten und granitischen Gesteinen der südlichen Böhmischen Masse in Niederösterreich. Dr. Diss GöttingenGoogle Scholar
  91. Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I (1990) Crust assimilation by mantle melts in the Ivrea Zone. Nature 347:731–736Google Scholar
  92. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  93. Weber K, Duyster J (1990) Moldanubian zone of the Waldviertel, Lower Austria. In: Franke W (ed) Paleozoic orogens in Central Europe — Geology and geophysics. (Field guide to Bohemian Massif) IGCP 233, pp 99–114Google Scholar
  94. Wedepohl KH (1975) The contribution of chemical data to assumptions about the origin of magmas from the mantle. fortschr Mineral 52:141–172Google Scholar
  95. Wedepohl KH (1991) Chemical composition and fractionation of the continental crust. Geol Rundsch 80:207–223Google Scholar
  96. Wedepohl KH, Heinrichs H, Bridgwater D (1991) Chemical characteristics of typical quartzfeldspatic rocks in the Archean crust of SW and SE Greenland. Contrib Mineral Petrol 107:163–179Google Scholar
  97. Wendt JI, Kröner A, Todt W, Fiala J, Rajlich P (1989) 2 Ga zircon ages for Moldanubian basement and the age of the granulite facies metamorphism in southern Bohemia, CSSR. Terra Abstr 1:4Google Scholar
  98. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral petrol 95:407–419Google Scholar
  99. White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22Google Scholar
  100. Wickham SM (1987) The segregation and emplacement of granitic magmas. J Geol Soc London 144:281–297Google Scholar
  101. Wolf MB, Wyllie PJ (1991) Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and application to the segregation of magmas. Mineral Petrol 44:151–179Google Scholar
  102. Wyllie PJ (1977) Crustal anatexis: an, experimental review. Tectonophysics 43:41–71Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. Vellmer
    • 1
  • K. H. Wedepohl
    • 1
  1. 1.Geochemisches Institut der UniversitätGöttingenGermany

Personalised recommendations