Current Genetics

, Volume 26, Issue 4, pp 321–328 | Cite as

Partial nucleotide sequence of a single ribosomal RNA coding region and secondary structure of the large subunit 25 s rRNA of Candida albicans

  • Thyagarajan Srikantha
  • Robin R. Gutell
  • Brian Morrow
  • David R. Soll
Original Articles

Abstract

A rDNA cistron of Candida albicans strain WO-1 was cloned and the ITS1, ITS2, 5.8 s rDNA and 25 s rDNA coding regions sequenced in their entirety. These sequences were compared to those of three related yeast species (Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Thermomyces lanuginosus), and the 5.8 s rDNA was compared to seven additional 5.8 s rDNAs from organisms ranging in complexity from D. discoideum to H. sapiens. The C. albicans ITS regions are shorter than those of most other eukaryotes. The 25 s and 5.8 s rDNA sequences were folded into a secondary structure model based on comparative methods. In a comparison of regional similarities between the large subunit rDNAs of C. albicans, the three related yeasts and other eukaryotes, it is demonstrated that the additional sequences not present in the E. coli 23 s rDNA are more variable than the regions present in both prokaryotes and eukaryotes.

Key words

Ribosomal RNA sequence Candida albicans Secondary rRNA structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankier AT, Weston KM, Barrell BG (1987) Methods Enzymol 155: 51–93Google Scholar
  2. Barta A, Steiner G, Brosius J, Noller FH, Kuechler E (1984) Proc Natl Acad Sci USA 81:3607–3611Google Scholar
  3. Bayev AA, Georgiev OI, Hadjiolov AA, Nikolaev N, Skryabin KG, Zakharyev VM (1981) Nucleic Acids Res 9:789–799Google Scholar
  4. Bruns DT, White JJ, Taylor WJ (1991) Annu Rev Ecol Syst 22: 525–564Google Scholar
  5. Cannon DR, Jenkinson FH, Sheperd GM (1990) Mol Gen Genet 221: 210–218Google Scholar
  6. Clark CG (1987) J Mol Evol 25:343–350Google Scholar
  7. Ford PJ, Matheison T (1978) Eur J Biochem 87:199–214Google Scholar
  8. Gerbi SA (1985) In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 410–517Google Scholar
  9. Gerbi SA, Jeppesen C, Stebbins-Boaz B, Ares Jr M (1987) CSHSQB LII 709–719Google Scholar
  10. Gourse RL, Thurlow DL, Gerbi SA, Zimmerman RA (1981) Proc Natl Acad Sci USA 78:2722–2726Google Scholar
  11. Guadet J, Julien J, Lafay J, Brygoo Y (1989) Mol Biol Evol 6: 227–242Google Scholar
  12. Gutell RR (1993) Curr Opinion Struct Biol: Nucleic Acids 3:313–322Google Scholar
  13. Gutell RR, Woese C (1990) Proc Natl Acad Sci USA 87:663–667Google Scholar
  14. Gutell RR, Gray WM, Schnare NM (1993) Nucleic Acids Res 21: 3055–3074Google Scholar
  15. Gutell RR, Weiser B, Woese CR, Noller HF (1985) Prog Nucleic Acid Res Mol Biol 32:155–216Google Scholar
  16. Hanock JM, Dover GA (1988) Mol Biol Evol 5:377–391Google Scholar
  17. Haselmann T, Gutell RR, Jurka J, Fox GE (1989) J Biomol Struct Dyn 7:181–186Google Scholar
  18. Hassouna N, Michot B, Bachellerie (1984) Nucleic Acids Res 12: 3563–3583Google Scholar
  19. Hellstein J, Vawter-Hugart H, Fotos P, Schmid J, Soll DR (1993) J Clin Microbiol 31:3190–3199Google Scholar
  20. Hendriks L, Goris A, Neefs J, De Peer YV, Hennebert G, Wachter RD (1989) System Appl Microbiol 12:223–229Google Scholar
  21. Liu W, Lo CA, Nazar NR (1983) J Mol Biol 171:217–224Google Scholar
  22. Magee BB, D'souza TM, Magee, PT (1987) J Bacteriol 169:1639–1643Google Scholar
  23. Mercure S, Rougeau N, Montplaisir S Lemay G (1993a) Nucleic Acids Res 21:1490Google Scholar
  24. Mercure S, Rougeau N, Montplaisir S, Lemay G (1993b) Nucleic Acids Res 21:4640Google Scholar
  25. Nazar RN, Sitz TO, Busch H (1976) Biochemistry 15:505–508Google Scholar
  26. Noller HF (1991) Annu Rev Biochem 60:191–227Google Scholar
  27. Ozaki T, Hoshikawa Y, Iida Y, Iwabuchi M (1984) Nucleic Acids Res 12:4171–4184Google Scholar
  28. Pace NR, Smith DK, Olsen GJ, James BD (1989) Gene 82:65–75Google Scholar
  29. Pavlakis GN, Jordan BR, Wust RM, Vournakas JN (1979) Nucleic Acids Res 7:2213–2238Google Scholar
  30. Planta RJ, Klootwijk J, Raue HA, Brand RC, Veldman GM, Stiekema WJ, De Jonge P (1980) In: Osawa S, Ozeki H, Uchida M, Yura T (eds) Genetics and evolution of polymerase, tRNA and ribosomes. University of Tokoy Press, pp 451–470Google Scholar
  31. Ramsey H, Morrow B, Soll DR (1994) Microbiology 140 (in press)Google Scholar
  32. Raman AT, Martin G, Vera H (1990) J Mol Evol 30:170–181Google Scholar
  33. Raue HA, Musters W, Rutgers CA, Van 'T Riet J, Planta RJ (1990) In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The ribosome: structure, function and evolution. American Society for Micobiology, pp 217–235Google Scholar
  34. Reeder R (1990) Trends Genet 6:390–395Google Scholar
  35. Rubin MG (1973) J Biol Chem 248:3860–3875Google Scholar
  36. Rustchenko-Bulgac EP (1991) J Bacteriol 173:6586–6596Google Scholar
  37. Rustschenko EP, Curran TM, Sherman F (1993) J Bacteriol 175: 7189–7199Google Scholar
  38. Schmid J, Voss E, Soll DR (1990) J Clin Microbiol 28:1236–1243Google Scholar
  39. Sherer S, Stevens DA (1988) Proc Natl Acad Sci USA 85:1452–1456Google Scholar
  40. Slutsky B, Buffo J, Soll DR (1985) Science 230:666–669Google Scholar
  41. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) J Bacteriol 169:189–197Google Scholar
  42. Soll DR (1992) Clin Microbiol Rev 5:183–203Google Scholar
  43. Soll DR, Morrow B, Srikantha T (1993) Trends Genet 9:61–65Google Scholar
  44. Srikantha T, Soll DR (1993) Gene 131:53–60Google Scholar
  45. Suzuki T, Kobayashi I, Kanbe T, Tanaka K (1989) J Gen Microbiol 135:425–434Google Scholar
  46. Thompson J, Schmidt F, Cundliffe E (1982) J Biol Chem 7915–7917Google Scholar
  47. Thweatt R, Lee JC (1990) J Mol Biol 211:305–320Google Scholar
  48. Veldman GM, Klootwijk J, de Regt VCHF, Planta JR (1981a) Nucleic Acids Res 9:6935–6952Google Scholar
  49. Veldman GM, Klootwijk J, van Heerikhuizen H, Planta JR (1981b) Nucleic Acids Res 9:4847–4862Google Scholar
  50. Whelan WL (1987) Crit Rev Microbiol 21:99–170Google Scholar
  51. Wilbur WJ, Lipman DJ (1983) Proc Natl Acad Sci USA 80:726–730Google Scholar
  52. Wildeman GA, Nazar NR (1981) J Biol Chem 256:5675–5682Google Scholar
  53. Woese CR (1987) Microbiol Rev 51:221–271Google Scholar
  54. Wool IG, Endo Y, Chan YL, Gluck A (1990) In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The ribosome: structure, function and evolution. American Society for Microbiology, pp 203–214Google Scholar
  55. Yeh LC, Lee JC (1990) J Mol Biol 211:699–712Google Scholar
  56. Zieg J, Simon M (1980) Proc Natl Acad Sci USA 77:4196–4200Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Thyagarajan Srikantha
    • 1
  • Robin R. Gutell
    • 2
  • Brian Morrow
    • 1
  • David R. Soll
    • 1
  1. 1.Department of Biological SciencesUniversity of IowaIA CityUSA
  2. 2.Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations