Advertisement

Zoomorphology

, Volume 100, Issue 2, pp 107–120 | Cite as

Coxal organs in geophilomorpha (Chilopoda). Organization and fine structure of the transporting epithelium

  • Jörg Rosenberg
Article

Summary

The coxal organs of different Geophilomorpha were studied by scanning and by transmission electron microscopy.

1) The coxae of the last trunk-segment contain pores in different arrangements and numbers. They are the openings of the coxal organs.

2) The coxal organs are formed by four different cell types: the main epithelium consists of radially arranged transporting cells, surrounded by junctional cells, gland cells, and the cells of the pore channel.

3) The cells of the transporting epithelium show an enlargement of the apical and basal surface. Deep and narrow extracellular channels of the apical infoldings are closely associated by mitochondria (plasmalemma-mitochondrial complexes). The epithelium is covered by a prominent cuticle with a spacious subcuticle.

4) A distinct mucous layer covers the cuticle of the transporting epithelia, and is secreted by the gland cells.

5) A small cellular sheath separates the epithelium of the coxal organ against the haemolymph.

6) The possible function of the coxal organs in ion and fluid transport is discussed.

Keywords

Electron Microscopy Transmission Electron Microscopy Developmental Biology Fine Structure Basal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attems C (1926–1930) Chilopoda. In: Kükenthal W (ed) Handbuch der Zoologie Vierter Band, Erste Hälfte. Walter de Gruyter & Co, Berlin LeipzigGoogle Scholar
  2. Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New YorkGoogle Scholar
  3. Bitsch J, Palévody C (1973) L'épithélium absorbant des vésicules coxales des Machilides (Insecta, Thysanura). Z Zellforsch Mikros Anat 143:169–182Google Scholar
  4. Demange JM (1981) Les Mille-Pattes. Boubée, ParisGoogle Scholar
  5. Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083Google Scholar
  6. Eason EH (1964) Centipedes of the British Isles. F Warner & Co Ltd, LondonGoogle Scholar
  7. Eisenbeis G (1974) Licht- und elektronenmikroskopische Untersuchungen zur Ultrastruktur des Transportepithels am Ventraltubus arthropleoner Collembolen (Insecta). Cytobiologie 9:180–202Google Scholar
  8. Eisenbeis G (1976) Zur Feinstruktur und Histochemie des Transportepithels abdominaler Koxalblasen der Doppelschwanz-Art Campodea staphylinus (Diplura: Campodeidae). Ent Germ 3:185–201Google Scholar
  9. Fain-Maurel MA, Cassier P (1971) Différenciations cytoplasmiques en relation avec la fonction excrétrice dans les reins céphaliques de Petrobius maritimus Leach (Insecte, Aptérygote). J Microsc 10:163–178Google Scholar
  10. Gupta BL, Berridge MJ (1966) Fine structural organization of the rectum in the blowfly, Calliphora erythrocephala (Meig.) with special reference to connective tissue, tracheae and neurosecretory innervation in the rectal papillae. J Morphol 120:23–82Google Scholar
  11. Haupt J (1969) Zur Feinstruktur der Maxillarnephridien von Scutigerella immaculata Newport (Symphyla, Myriapoda). Z Zellforsch Mikrosk Anat 101:401–407Google Scholar
  12. Houlihan DF (1976) Water transport by the eversible abdominal vesicles of Petrobius brevistylis. J Insect Physiol 22:1683–1695Google Scholar
  13. Karlsson U, Schultz RL (1965) Fixation of the central nervous system for electron microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J Ultrastruct Res 12:160–182Google Scholar
  14. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A-138AGoogle Scholar
  15. Lewis JGE (1961) The life history and ecology of the littoral centipede Strigamia (=Scolioplanes) maritima (Leach). Proc Zool Soc London 137:221–248Google Scholar
  16. Noble-Nesbitt J (1963) A site of water and ionic exchange with the medium in Podura aquatica L. (Collembola, Isotomidae). J Exp Biol 40:701–711Google Scholar
  17. Noble-Nesbitt J (1976) Absorption of water vapour by Thermobia domestica and other insects. In: Schmidt-Nielsen K, Bolis L, Madrell SHP (eds) Comparative Physiology: Water, ions and fluid mechanism. Cambridge University Press, Cambridge, LondonGoogle Scholar
  18. Noirot C, Noirot-Thimothée C (1971) Ultrastructure du proctodéum chez le Thysanure Lepismodes inquilinus Newman (=Thermobia domestica Packard). II Le sac anal. J Ultrastruct Res 37:335–350Google Scholar
  19. Noirot C, Quennedy A (1974) Fine structure of insect epidermal glands. Ann Rev Entomol 19:61–80Google Scholar
  20. Oschman JL, Wall BJ (1969) The structure of the rectal pads of Periplaneta americana L. with regard to the fluid transport. J Morphol 127:475–510Google Scholar
  21. Phillips JE, Dockrill AA (1968) Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria). J Exp Biol 48:521–532Google Scholar
  22. Rosenberg J (1974) Topographie und Ultrastruktur der endokrinen Kopfdrüsen (Glandula capitis) von Scutigera coleoptrata L. (Chilopoda, Notostigmophora). Z Morphol Tiere 79:311–321Google Scholar
  23. Rosenberg J (1979) Topographie und Feinstruktur des Maxillarnephridium von Scutigera coleoptrata (L.) (Chilopoda, Notostigmophora). Zoomorphologie 92:141–159Google Scholar
  24. Rosenberg J, Bär E (1981) Coxalorgane bei Chilopoden: Feinstruktur und Ionen-Transport. Verh Dtsch Zool Ges 1981:263Google Scholar
  25. Rosenberg J, Seifert G (1977) The coxal glands of Geophilomorpha (Chilopoda): Organs of osmoregulation. Cell Tissue Res 182:247–251Google Scholar
  26. Roth VD, Brown WL (1976) Other intertidial air-breathing arthropods. In: Cheng L (ed) Marine insects. North-Holland Publ Comp, Amsterdam, OxfordGoogle Scholar
  27. Schlüter U (1980a) Plasmalemma-mitochondrial complexes involved in water transport in the hindgut of a milliped, Scaphiostreptus sp.. Cell Tissue Res 205:333–336Google Scholar
  28. Schlüter U (1980b) Struktur und Funktion des Enddarms chilognather Diplopoden. Zool Jahrb Anat Ontog Tiere 103:607–639Google Scholar
  29. Tömösvary E (1883–1884) Über den Bau der Spinndrüsen der Geophiliden. Mathem. Naturw. Ber. Ungarn Bd II:441–447Google Scholar
  30. Wall BJ, Oschman JL (1975) Structure and function of the rectum in insects. Fortschr Zool 23:193–222Google Scholar
  31. Wenning A (1977) Zur Struktur und Funktion des Exkretionssystems von Lithobius forficatus L. (Myriapoda, Chilopoda). Diss. FU BerlinGoogle Scholar
  32. Verhoeff KW (1925) Klasse Chilopoda. In: Bronn HG (ed) Klassen und Ordnungen des Tierreichs Fünfter Band, II. Abteilung, Akad Verlagsges mbHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Jörg Rosenberg
    • 1
  1. 1.Lehrstuhl für Experimentelle MorphologieZoologisches Institut der UniversitätKöln 41Bundesrepublik Deutschland

Personalised recommendations