, Volume 98, Issue 1, pp 17–34 | Cite as

The structure of the double-eyes of Baetis and the uniform eyes of Ecdyonurus (Ephemeroptera)

  • Frank Burghause


The lateral eyes of Baetis vernus are structured similarly in both sexes. They are eucone apposition eyes with a closed rhabdom formed by eight retinula cells. The accessory pigment cells surround the ommatidia over their entire length. The morphological adaptation to different illuminations consists of a radial displacement of mitochondria and endoplasmic vacuoles. The dorsal eyes of the male Baetis, often called turban eyes, differ remarkably in structure and size from the lateral organs by a large clear zone which is only crossed by thread-like elongations of the retinula cells; the rhabdom is divided in a distal part next to the cone and a large basal part. Each of the seven retinula cells contributes microvilli to both parts of the rhabdom. The pigment cells only surround the cone and the distal part of the rhabdom, whereas the basal rhabdoms are optically isolated from each other by a ring of trachea. No morphological adaptation to different illumination is detectable in the dorsal eyes. The relation of the two different eyes of the male, being optically isolated but forming a morphologically connected complex, are discussed. With the description of the dorsal eyes of the subimago the formation of the dorsal eyes is investigated. A possible mode of function is considered. The male of Ecdyonurus venosus has larger eyes than the female, but they are structured after the same scheme. The eyes are similar to the lateral eyes of Baetis.


Developmental Biology Distal Part Entire Length Basal Part Radial Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations (used in figures)


axon of the retinula cell


basement membrane




distal rhabdom


primary pigment cells




lateral eye






accessory pigment cell


nucleus of a retinula cell




pigment grains






turban eye


zonula adhaerens


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ast F (1920) Über den feineren Bau der Facettenaugen bei Neuropteren. Zool Jahrb Abt Anat Ontog 41:411–585Google Scholar
  2. Burghause F (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Physiol 83:502–525Google Scholar
  3. Carriere J (1886) Kurze Mitteilungen aus fortgesetzten Untersuchungen über die Sehorgane. Zool Anz 9:141, 479–496Google Scholar
  4. Fleissner F (1974) Circadiane Adaptation und Schirmpigmentverlagerung in den Sehzellen der Medianaugen von Androctonus australis L. J Comp Physiol 91:399–416Google Scholar
  5. Hamdorf K, Schwemmer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 263–289Google Scholar
  6. Horridge GA (1976) The ommatidium of the dorsal eye of Cloeon as a specialization for photoreisomerisation. Proc R Soc London B193:17–29Google Scholar
  7. Horridge GA, McLean M (1978) The dorsal eye of the mayfly Atalophlebia. Proc R Soc London B200: × 137–150Google Scholar
  8. Nässel DR, Waterman TH (1979) Massive diurnally modulated Photoreceptor turnover in Crab Light and Dark Adaptation. J Comp Physiol 131:205–216Google Scholar
  9. Priesner H (1916) Zur Entwicklungsgeschichte der Turbanaugen von Cloeon dipterum L. Zool Jahrb Abt Anat Onto 39:485–514Google Scholar
  10. Richardson KC, Jarret L, Finke EH (1960) Embedding in epoxy resin for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323Google Scholar
  11. Schneider L, Langer H (1969) Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559Google Scholar
  12. Schneider L, Gogala M, Draslar K, Langer H, Schlecht P (1978) Feinstruktur und Schirmpigmenteigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta Neuroptera). Cytobiol 16:274–307Google Scholar
  13. Shafer GD (1907) Histology and development of divided eyes of certain insects. Proc Washington Acad Sci 8:459–486Google Scholar
  14. Snyder AW (1975) Optical properties of invertebrate photoreceptors. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 179–235Google Scholar
  15. Streble H (1960) Die Augen der Eintagsfliege Cloeon dipterum. Mikrokosmos 49:237–244Google Scholar
  16. Ulmer G (1934) Ephemeroptera. In: Schulze P (ed) Biologie der Tiere Deutschlands. Nr. 34. Gebr Borntraeger, BerlinGoogle Scholar
  17. Williams DS, Blest AD (1980) Extracellular shedding of photoreceptor membrane in the open rhabdom of a Tipulid fly. Cell Tissue Res 205:423–438Google Scholar
  18. Wohlburg-Buchholz K (1976) The dorsal eye of Cloeon dipterum (Ephemeroptera). Z Naturforsch 31c:335–336Google Scholar
  19. Wohlburg-Buchholz K (1977) The superposition eye of Cloeon dipterum: The organisation of the lamina ganglionaris. Cell Tissue Res 177:9–28Google Scholar
  20. Zimmer C (1898) Die Facettenaugen der Ephemeriden. Z wiss Zool 63:236–261Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Frank Burghause
    • 1
  1. 1.Institut für Allgemeine Zoologie der Freien Universität BerlinBerlin 33Bundesrepublik Deutschland

Personalised recommendations