Current Genetics

, Volume 26, Issue 5–6, pp 497–505

Analysis of the introns in genes encoding small G proteins

  • Wolfgang Dietmaier
  • Stefan Fabry
Original Articles

Abstract

Because all small G proteins (SGPs) possess a very similar array of structural and functional domains, they are obvious candidates for examining the relationships postulated to exist between the exon-intron structure of genes and the domain structure of the encoded proteins. To address this issue, and to possibly gain insight into the evolution of their introns, we have analyzed positions, sizes, and sequences of 125 introns from 28 SGP genes. These introns were found to be distributed in 60 different locations throughout the aligned sequences, with a preference for the 5′-half of the genes. More than 50% of the positions were found to be shared by two or more genes, and genes encoding SGPs of very similar amino acid sequence (i.e., isotypes) in quite closely related species tend to have most, or all, of their introns in identical locations, indicating a common evolutionary origin (homologous introns). However, with few exceptions, no statistically significant sequence similarity or common folding motif was found between homologous intron pairs. Only three intron positions are shared between members of distantly related SGP subfamilies. These three potentially ancient intron locations fall between regions encoding α-helices or β-sheets, but two of them interrupt regions encoding known functional (guanosine-nucleotide-binding) modules. Intron positions that are occupied only in single genes, or in genes encoding very similar SGPs, do not show any preferential distribution with respect to regions encoding structural or functional motifs. This discordance between exon modules and structural and/or functional protein domains suggests that most, if not all, introns in modern SGP genes arose by independent insertion events after diversification of the various SGP subfamilies, and therefore probably did not participate in the early evolution of these genes.

Key words

Intron evolution Introns-early Introns-late Exon shuffling Ras family Green algae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baron M, Norman DG, Campbell ID (1991) Trends Biochem Sci 16:233–237Google Scholar
  2. Baumert M, Fischer von Mollard G, Jahn R, Südhof TC (1993) Biochem J 293:157–163Google Scholar
  3. Bokoch GM, Der CJ (1993) FASEB J 7:750–759Google Scholar
  4. Bork P (1992) Curr Opinions Struct Biol 2:413–421Google Scholar
  5. Bourne HR, Sanders DA, McCormick F (1991) Nature 349:117–127Google Scholar
  6. Casale WL, McConnell DG, Wang S-Y, Lee Y-J, Linz JE (1990) Mol Cell Biol 10:6654–6663Google Scholar
  7. Cavalier-Smith T (1978) J Cell Sci 34:247–278Google Scholar
  8. Cavalier-Smith T (1991) Trends Genet 7:145–148Google Scholar
  9. Darnell JE (1978) Science 202:1257–1260Google Scholar
  10. Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395Google Scholar
  11. Dibb NJ (1993) FEBS Lett 325:135–139Google Scholar
  12. Doolittle WF (1978) Nature 272:581–582Google Scholar
  13. Fabry S, Naß N, Huber H, Palme K, Jaenicke L, Schmitt R (1992) Gene 118:153–162Google Scholar
  14. Fabry S, Jacobsen A, Huber H, Palme K, Schmitt R (1993) Curr Genet 24:229–240Google Scholar
  15. Fitch WM, Margoliash E (1967) Science 15:279–284Google Scholar
  16. Gilbert W, Glynias M (1993) Gene 135:137–144Google Scholar
  17. Gilbert W, Marchionni M, McKnight G (1986) Cell 46:151–154Google Scholar
  18. Haubruck H, Prange R, Vorgias C, Gallwitz D (1989) EMBO J 8:1427–1432Google Scholar
  19. Heintz K, Palme K, Diefenthal T, Russo VEA (1992) Mol Gen Genet 235:413–421Google Scholar
  20. Hengst L, Lehmeier T, Gallwitz D (1990) EMBO J 9:1949–1955Google Scholar
  21. Hori K, Kajiwara S, Saito T, Miyazawa H, Katayose Y, Shisido K (1991) Gene 105:91–96Google Scholar
  22. Ishibashi O, Shisido K (1993) Gene 125:233–234Google Scholar
  23. Kersanach R, Brinkmann H, Liaud M-F, Zhang D-X, Martin W, Cerff R (1994) Nature 367:387–389Google Scholar
  24. Lee C-M, Haun RS, Tsai S-C, Moss J, Vaugham M (1992) J Biol Chem 267:9028–9034Google Scholar
  25. Martin W, Brinkmann H, Savona C, Cerff R (1993) Proc Natl Acad Sci USA 90:8692–8696Google Scholar
  26. McGrath JP, Capon DJ, Smith DH, Chen EY, Seeburg PH, Goeddel DV, Levinson AD (1983) Nature 304:501–506Google Scholar
  27. Miyake S, Yamamoto M (1990) EMBO J 9:1417–1422Google Scholar
  28. Murtagh JJ, Mowatt MR, Lee C-Y, Scott F-J, Mishima K, Nash TE, Moss J, Vaughan M (1992) J Biol Chem 267:9654–9662Google Scholar
  29. Needleman SB, Wunsch CD (1970) J Mol Biol 48:443–453Google Scholar
  30. Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) EMBO J 9:2351–2359Google Scholar
  31. Palme K, Diefenthal T, Moore I (1993) J Exp Bot 44 Suppl:183–195Google Scholar
  32. Patthy L (1991) Curr Opinions Struct Biol 1:351–361Google Scholar
  33. Pfeffer SR (1992) Trends Cell Biol 2:41–46Google Scholar
  34. Reymond CD, Gomer RH, Mehdy MC, Firtel RA (1984) Cell 39:141–148Google Scholar
  35. Rogers J (1989) Trends Genet 5:213–216Google Scholar
  36. Serventi IM, Cavanaugh E, Moss J, Vaughan M (1993) J Biol Chem 268:4863–4873Google Scholar
  37. Sharp PA (1985) Cell 42:397–400Google Scholar
  38. Tamkun JW, Kahn RA, Kissinger M, Brizuela BJ, Rulka C, Scott MP, Kennison JA (1991) Proc Natl Acad Sci USA 88:3120–3124Google Scholar
  39. Taparowsky E, Shimizu K, Goldfarb M, Wigler M (1983) Cell 34: 581–586Google Scholar
  40. Terryn N, van Montagu M, Inzé D (1993) Plant Mol Biol 22:143–152Google Scholar
  41. Tsai S-C, Haun RS, Tsuchiya M, Moss J, Vaugham M (1991) J Biol Chem 266:23053–23059Google Scholar
  42. Valencia A, Chardin P, Wittinghofer A, Sander C (1991) Biochemistry 30:4637–4648Google Scholar
  43. Wagner P, Hengst L, Gallwitz D (1992) Methods Enzymol 219:369–387Google Scholar
  44. Weber K, Kabsch W (1994) EMBO J 13:1280–1286Google Scholar
  45. Wichmann H, Disela C, Haubruck H, Gallwitz D (1989) Nucleic Acids Res 17:6737–6738Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Wolfgang Dietmaier
    • 1
  • Stefan Fabry
    • 1
  1. 1.Lehrstuhl für Genetik, Institut für Biochemie, Genetik und MikrobiologieUniversität RegensburgRegensburgGermany

Personalised recommendations