Advertisement

Current Genetics

, Volume 19, Issue 5, pp 339–342 | Cite as

The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation

  • Josep Clotet
  • Francesc Posas
  • Antonio Casamayor
  • Ine Schaaff-Gerstenschläger
  • Joaquin Arinõ
Original Articles

Summary

S. cerevisiae gene DIS2S1, which codes for a protein very similar to the catalytic subunit of mammalian protein phosphatase 1, was disrupted “in vitro”. Diploid yeast cells were transformed and sporulated. Tetrad analysis demonstrated that disruption of DIS2S1 is lethal for the cell. Glycogen phosphorylase a and glycogen synthase activity ratio were measured in diploids carrying a disrupted allele of the gene. Phosphorylase was dramatically activated in mutant cells but, under the same conditions, glycogen synthase activity was essentially identical in both mutant and wild-type cells.

Key words

Gene disruption Protein phosphatases Glycogen phosphorylase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt KT, Styles CA, Fink GR (1989) Cell 56:527–537Google Scholar
  2. Chung CT, Niemela SL, Miller RH (1989) Proc Natl Acad Sci USA 86:2172–2175Google Scholar
  3. Cohen P (1986) The Enzymes XVII:462–497Google Scholar
  4. Cohen P (1989) Annu Rev Biochem 58:453–508Google Scholar
  5. Cohen P, Schelling DL, Stark MJR (1989) FEBS Lett 250:601–606Google Scholar
  6. Cohen PTW, Brewis ND, Hughes V, Mann DJ (1990) FEBS Lett 268:355–359Google Scholar
  7. Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13Google Scholar
  8. Fosset ML, Muir LW, Nielsen LD, Fisher EH (1971) Biochemistry 10:4105–4113Google Scholar
  9. François J, Hers H-G (1988) Eur J Biochem 174:561–567Google Scholar
  10. Gilboe DP, Larson KL, Nuttall FQ (1972) Anal Biochem 47:20–27Google Scholar
  11. Huang K-P, Cabib E (1974) J Biol Chem 249:3851–3861Google Scholar
  12. Hwang PK, Tugendreich S, Fletterick RJ (1989) Mol Cell Biol 9:1659–1666Google Scholar
  13. Krebs EG, Beavo JA (1979) Annu Rev Biochem 48:923–959Google Scholar
  14. Layne E (1957) Methods Enzymol 3:450–451Google Scholar
  15. Ohkura H, Kinoshita N, Miyatani S, Toda S, Yanagida M (1989) Cell 57:997–1007Google Scholar
  16. Peng Z-Y, Trumbly RJ, Reimann EM (1990) J Biol Chem 265:13871–13877Google Scholar
  17. Roach PJ (1986) The Enzymes XVII:499–539Google Scholar
  18. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  20. Sherman F, Fink GR, Hicks JB (1986) Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  21. Thomas JA, Schelender KK, Larner J (1968) Anal Biochem 25:486–499Google Scholar
  22. Wingerden-Drissen R, Becker J-U (1983) Biochim Biophys Acta 743:343–350Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Josep Clotet
    • 1
  • Francesc Posas
    • 1
  • Antonio Casamayor
    • 1
  • Ine Schaaff-Gerstenschläger
    • 2
  • Joaquin Arinõ
    • 1
  1. 1.Departament de Bioquímica i Biología Molecular, Facultat de VeterinariaUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Institut für MikrobiologieTechnische Hoschschule DarmstadtDarmstadtFederal Republic of Germany

Personalised recommendations