Current Genetics

, Volume 26, Issue 3, pp 256–262

Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa

  • Gabriele Gockel
  • Wolfgang Hachtel
  • Susanne Baier
  • Christian Fliss
  • Mark Henke
Original Articles

Abstract

The colourless, nonphotosynthetic protist Astasia longa is phylogenetically related to Euglena gracilis. The 73-kb plastid DNA (ptDNA) of A. longa is about half the size of most chloroplast DNAs (cpDNAs). More than 38 kb of the Astasia ptDNA sequence has been determined. No genes for photosynthetic function have been found except for rbcL. Identified genes include rpoB, tufA, and genes coding for three rRNAs, 17 tRNAs, and 13 ribosomal proteins. Not only is the nucleotide sequence of these genes highly conserved between A. longa and E. gracilis, but a number of these genes are clustered in a similar fashion and have introns in the same positions in both species. The results further support the idea that photosynthetic genes normally encoded in cpDNA have been preferentially lost in Astasia, but that the chloroplast genes coding for components of the plastid translational apparatus have been maintained. This apparatus might be needed for the expression of rbcL and also for that of still unidentified nonphotosynthetic genes of Astasia ptDNA.

Key words

Astasia longa Plastid DNA Ribosomal protein genes tRNA genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen EY, Seeburg PH (1985) DNA 4:165–170Google Scholar
  2. Christopher DA, Hallick RB (1989) Nucleic Acids Res 17:7591–7608Google Scholar
  3. Christopher DA, Hallick RB (1990) Plant Cell 2:659–671Google Scholar
  4. Christopher DA, Cushman JC, Price CA, Hallick RB (1988) Curr Genet 14:275–286Google Scholar
  5. De Pamphilis CW, Palmer JD (1990) Nature 348:337–339Google Scholar
  6. Dix KP, Rawson JRY (1983) Curr Genet 7:265–272Google Scholar
  7. Fukuzawa H, Kohchi T, Sano T, Shirai H, Umesono K, Inokuchi H, Ozeki H, Ohyama K (1988) J Mol Biol 203:333–351Google Scholar
  8. Gingrich JC, Hallick RB (1985) J Biol Chem 260:16156–16161Google Scholar
  9. Graf L, Kössel H, Stutz E (1980) Nature 286:908–910Google Scholar
  10. Hallick RB, Buetow DE (1989) In: Buetow DE (ed) The biology of Euglena, vol 4. Academic Press, San Diego, pp 351–414Google Scholar
  11. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Nucleic Acids Res 21:3537–3544Google Scholar
  12. Kössel H, Natt E, Strittmatter G, Fritzsche E, Gozdzicka-Jozefiak A, Przybyl D (1985) In: Vloten-Doting L van, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 183–198Google Scholar
  13. Kröger M, Wahl R, Schachtel G, Rice P (1992) Nucleic Acids Res 20:2119–2145Google Scholar
  14. Lipman DJ, Pearson WR (1985) Science 227:1435–1441Google Scholar
  15. Manzara T, Hallick RB (1988) Nucleic Acids Res 16:9866Google Scholar
  16. Manzara TB, Hu J, Price CA, Hallick RB (1987) Plant Mol Biol 8: 327–336Google Scholar
  17. Monfort A, Rutti B, Stutz E (1986) Nucleic Acids Res 14:3971Google Scholar
  18. Montandon PE, Vasserot A, Stutz E (1986) Curr Genet 11:35–39Google Scholar
  19. Ohyama H, Fukuzawa H, Kohchi T, Shirai H, Sano S, Sano T, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574Google Scholar
  20. Orozco ME, Rushlow KE, Dodd JR, Hallick RB (1980) J Biol Chem 255:10997–11003Google Scholar
  21. Pringsheim EG (1942) New Phytol 41:171–205Google Scholar
  22. Roux E, Stutz E (1985) Curr Genet 9:221–227Google Scholar
  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  24. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  25. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamagashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049Google Scholar
  26. Siemeister G, Hachtel W (1989) Curr Genet 15:435–441Google Scholar
  27. Siemeister G, Hachtel W (1990a) Plant Mol Biol 14:825–833Google Scholar
  28. Siemeister G, Hachtel W (1990b) Curr Genet 17:433–438Google Scholar
  29. Siemeister G, Buchholz C, Hachtel W (1990a) Mol Gen Genet 220: 425–432Google Scholar
  30. Siemeister G, Buchholz C, Hachtel W (1990b) Curr Genet 18: 457–464Google Scholar
  31. Sprinzl M, Hartmann T, Weber J, Blank J, Zeidler R (1989) Nucleic Acids Res 17:r1-r172Google Scholar
  32. Subramanian AR, Steinmetz A, Bogorad L (1983) Nucleic Acids Res 11:5277–5286Google Scholar
  33. Sugiura M (1992) Plant Mol Biol 19:149–168Google Scholar
  34. Tabor S, Richardson CC (1987) Proc Natl Acad Sci USA 84: 4767–4771Google Scholar
  35. Wolfe KH, Morden CW, Palmer JD (1992) Proc Natl Acad Sci USA 89:10648–10652Google Scholar
  36. Yoshimura M, Kimura M, Ohno M, Inokuchi H, Ozeki H (1984) J Mol Biol 177:609–625Google Scholar
  37. Zurawski G, Zurawski SM (1985) Nucleic Acids Res 13:4521–4526Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Gabriele Gockel
    • 1
  • Wolfgang Hachtel
    • 1
  • Susanne Baier
    • 1
  • Christian Fliss
    • 1
  • Mark Henke
    • 1
  1. 1.Botanisches InstitutUniversität BonnBonnGermany

Personalised recommendations