Current Genetics

, Volume 25, Issue 2, pp 142–149 | Cite as

Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination

  • Hans Peter Zassenhaus
  • Grace Denniger
Original Articles

Abstract

Mitochondrial DNA recombination was reduced in an yeast mutant lacking the NUC1 endo/exonuclease. Between linked markers in either the ω or cob region the frequency of recombination decreased nearly 50% compared to wild-type. Gene conversion frequencies in the var1 gene and in the ω region were also lower in the mutant strain. In particular, the gradient of gene conversion at ω was most affected by the absence of the NUC1 nuclease. In crosses between nuclease-deficient and wild-type strains, gene conversion frequencies at ω were reduced only when the ω+ allele was contributed to the zygote by the nuclease-deficient parent. We propose that the 5′ exonuclease activity of the NUC1 nuclease functions during recombination to enlarge heteroduplex tracts following a double-strand break in DNA. In crosses between nuclease-deficient and wild-type strains, the anisotropy in gene conversion frequencies at ω is hypothesized to be due to the slow mixing of parental motochondrial membranes as they fuse in the zygote.

Key words

Yeast Mitochondria DNA recombination 5′ exonuclease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birky CW Jr, Demko CA, Perlman PS, Strausberg RL (1978) Genetics 89:615–651Google Scholar
  2. Borst P (1972) Annu Rev Biochem 41:333–376Google Scholar
  3. Butow RA (1985) Trends Genet 1:81–84Google Scholar
  4. Butow RA, Perlman PS, Grossman LI (1985) Science 228:1496–1501Google Scholar
  5. Dake E, Hofmann TJ, McIntire S, Hudson A, Zassenhaus HP (1988) J Biol Chem 263:7691–7702Google Scholar
  6. Detloff P, White MA, Petes TD (1992) Genetics 132:113–123Google Scholar
  7. Dujon B (1981) Mitochondrial genetics and functions. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 505–635Google Scholar
  8. Dujon B, Slonimski PP, Weill L (1974) Genetics 78:415–437Google Scholar
  9. Dujon B, Collexaux L, Jacquier A, Michel F, Montheilhet C (1986) Mitochondrial introns as mobile genetic elements. The role of intron encoded proteins. In: Wickner RB, Hinnebusch A, Gunsalus A, Lambowitz A, Hollander A (eds) Extrachromosomal elements in lower eucaryotes. Plenum Publishing Corp. New York, pp 5–27Google Scholar
  10. Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13Google Scholar
  11. Fogel S, Mortimer R, Lusnak K (1981) Mechanisms of meiotic gene conversion, or “wanderings on a foreign strand.” In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces, 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 289–340Google Scholar
  12. Foury F, Vanderstraeten S (1992) EMBO J 11:2717–2726Google Scholar
  13. Jacquier A, Dujon B (1985) Cell 41:383–394Google Scholar
  14. Johnson DA, Gautsch JW, Sportsman JR, Elder JH (1984) Gene Anal Techn 1:3–8Google Scholar
  15. Lancashire WE, Mattoon JR (1979) Mol Gen Genet 170:333–344Google Scholar
  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  17. Nakagawa K-I, Morishima N, Shibata T (1992) EMBO J 11:2702–2715Google Scholar
  18. Nicolas A, Treco D, Schultes NP, Szostak JW (1989) Nature 338:35–39Google Scholar
  19. Orr-Weaver TL, Szostak JW (1985) Microbiol Rev 49:33–58Google Scholar
  20. Perlman PS, Butow RA (1989) Science 246:1106–1109Google Scholar
  21. Reenan RAG, Kolodner RD (1992) Genetics 132:975–985Google Scholar
  22. Strathern JN, Klar AJ, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C (1982) Cell 31:183–192Google Scholar
  23. Sun H, Treco D, Szostak JW (1991) Cell 64:1155–1161Google Scholar
  24. Vincent RD, Hofmann TJ, Zassenhaus HP (1988) Nucleic Acids Res 16:3297–3312Google Scholar
  25. Wenzlau JM, Saldanha RJ, Butow RA, Perlman PS (1989) Cell 56:421–430Google Scholar
  26. White CI, Haber JE (1990) EMBO J 9:663–673Google Scholar
  27. Zassenhaus HP, Hofmann TJ, Uthayashanker R, Vincent RD, Zona M (1988) Nucleic Acids Res 16:3283–3296Google Scholar
  28. Zeff RA, Geliebter J (1987) Focus 9:1–2Google Scholar
  29. Zhu H, Conrad-Webb H, Liao XS, perlman PS, Butow RA (1989) Mol Cell Biol 9:1507–1512Google Scholar
  30. Zinn AR, Butow RA (1984) Cold Spring Harbor Symp Quant Biol 49:115–121Google Scholar
  31. Zinn AR, Butow RA (1985) Cell 40:887–895Google Scholar
  32. Zinn AR, Pohlman JK, Perlman PS, Butow RA (1987) Plasmid 17:248–256Google Scholar
  33. Zinn AR, Pohlman JK, Perlman PS, Butow RA (1988) Proc Natl Acad Sci USA 85:2686–2690Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Hans Peter Zassenhaus
    • 1
  • Grace Denniger
    • 1
  1. 1.Department of Molecular Microbiology and ImmunologySt. Louis University Medical CenterSt. LouisUSA

Personalised recommendations