Physics and Chemistry of Minerals

, Volume 9, Issue 1, pp 38–47

Temperature coefficients of elastic constants of single crystal MgO between 80 and 1,300 K

  • Yoshio Sumino
  • Orson L. Anderson
  • Isao Suzuki


Elastic constants of single crystal MgO have been measured by the rectangular parallelepiped resonance (RPR) method at temperatures between 80 and 1,300 K. Elastic constants Cij (Mbar=103 kbar) and their temperature coefficients (kbar/K) are:
$$\begin{gathered} {\text{ }}C_{{\text{11}}} {\text{ }}C_{{\text{12}}} {\text{ }}C_{{\text{44}}} {\text{ }}K_s {\text{ }}C_s \hfill \\ C_{ij} {\text{ 300 K 2}}{\text{.966 0}}{\text{.959 1}}{\text{.562 1}}{\text{.628 1}}{\text{.004}} \hfill \\ \partial C_{ij} {\text{/}}\partial T{\text{100 K }} - {\text{0}}{\text{.259 0}}{\text{.013 }} - {\text{0}}{\text{.072 }} - {\text{0}}{\text{.078 }} - {\text{0}}{\text{.136}} \hfill \\ {\text{ 300K }} - {\text{0}}{\text{.596 0}}{\text{.068 }} - {\text{0}}{\text{.122 }} - {\text{0}}{\text{.153 }} - {\text{0}}{\text{.332}} \hfill \\ {\text{ 800 K }} - {\text{0}}{\text{.619 0}}{\text{.009 }} - {\text{0}}{\text{.152 }} - {\text{0}}{\text{.200 }} - {\text{0}}{\text{.314}} \hfill \\ {\text{ 1,300 K }} - {\text{0}}{\text{.598 0}}{\text{.036 }} - {\text{0}}{\text{.130 }} - {\text{0}}{\text{.223 }} - {\text{0}}{\text{.218}} \hfill \\ \end{gathered} $$

By combining the present results with the previous data on the thermal expansivity and specific heat, the thermodynamic properties of magnesium oxide are presented and discussed. The elastic parameters of MgO at very high temperatures in the earth's lower mantle are also clarified.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson OL (1965) Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single crystal data. In: Mason WP (ed) Physical acoustics, vol 3. Academic Press, New YorkGoogle Scholar
  2. Anderson OL (1966) Derivation of Wachtman's equation for the temperature dependence of elastic moduli of oxide compounds. Phys Rev 144:553–557Google Scholar
  3. Anderson OL (1980) An experimental high-temperature thermal equation of state bypassing the Grüneisen parameter. Phys Earth Planet Inter 22:173–183Google Scholar
  4. Anderson OL, Andreatch P Jr (1966) Pressure derivative of elastic constants of single crystal MgO at 23 and -195.8° C. J Am Ceram Soc 49:404–409Google Scholar
  5. Anderson OL, Sumino Y (1980) The thermodynamic properties of the earth's lower mantle. Phys Earth Planet Inter 23:314–331Google Scholar
  6. Anderson OL, Sumino Y (1981) The thermal pressure of MgO at high compression and high temperature. J Geophys Res Lett 8:572–574Google Scholar
  7. Barron HK, Berg, WT, Morrison JA (1959) On the heat capacity of crystalline magnesium oxide. Proc Roy Soc (London) 250A:70–83Google Scholar
  8. Bogardus EH (1965) Third order elastic constants of Ge, MgO, and fused SiO2. J Appl Phys 36:2504–2513Google Scholar
  9. Chang ZP, Barsch GR (1969) Pressure dependence of the elastic constants of single-crystalline magnesium oxide. J Geophys Res 74:3291–3294Google Scholar
  10. Demarest HH Jr (1971) Cube resonance method to determine the elastic constants of solids. J Acoust Soc Am 49:768–775Google Scholar
  11. Grüneisen E (1926) State of a solid body. NASA (Natl Aeronaut Space Adm) Publ No RE2-18-59W (translation of Handbuch der Physik vol 10, pp 1–52)Google Scholar
  12. Ichinose N, Egami H, Takahashi T (1972) New piezoelectric materials. Toshiba Rev 27:1–5Google Scholar
  13. Kumazawa M (1964) The elastic constants of rocks in terms of elastic constants of constituent mineral grains, petrofabric and interface structures. J Earth Sci Nagoya Univ 12:147–176Google Scholar
  14. Marklund K, Mahmoud SA (1971) Elastic constants of magnesium oxide. Phys Scr 3:75–76Google Scholar
  15. Ohno I (1976) Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystal. J Phys Earth 24:355–379Google Scholar
  16. Skinner BJ (1966) X-ray crystallographic data of minerals. In: Clark SP, Jr (ed) Handbook of physical constants. Geological Society of America, New York, pp 30–55Google Scholar
  17. Spetzler H (1970) Equation of state of polycrystalline and single crystal MgO to 8 kilobars and 800 K. J Geophys Res 75:2073–2087Google Scholar
  18. Stull DR, Prophet H (1971) JANAF thermochemical tables, 2nd edn. Natl Bur Stand Rept NSRDS-NBS 37, June 1971Google Scholar
  19. Sumino Y, Ohno I, Goto T, Kumazawa M (1976) Measurement of elastic constants and internal frictions on single-crystal MgO by rectangular parallelepiped resonance. J Phys Earth 24:263–273Google Scholar
  20. Sumino Y, Nishizawa O, Goto T, Ohno I, Ozima M (1977) Temperature variation of elastic constants of single-crystal forsterite between-190° and 400° C. J Phys Earth 25:377–392Google Scholar
  21. Suzuki I (1975) Thermal expansion of periclase and olivine, and their anharmonic properties. J Phys Earth 23:145–159Google Scholar
  22. Victor AC, Douglas TB (1963) Thermodynamic properties of magnesium oxide and beryllium oxide from 298 to 1,200 K. J Res Nat Bur Stand Sect A 67:325–329Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Yoshio Sumino
    • 1
  • Orson L. Anderson
    • 1
  • Isao Suzuki
    • 1
  1. 1.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Earth SciencesNagoya UniversityNagoyaJapan

Personalised recommendations