Physics and Chemistry of Minerals

, Volume 9, Issue 1, pp 23–29 | Cite as

Synthesis, solubility, electrokinetic properties and refined crystallographic data of sabugalite

  • R. Vochten
  • J. Pelsmaekers


Sabugalite has been synthesized directly from pure chemicals. From chemical, differential thermal and thermogravimetric analyses, its formula is calculated as HA1(UO2/PO4)2·16H2O. The natural relationship between hydrogen autunite, autunite and sabugalite was investigated by means of ion exchange experiments, and its infrared spectrum, electrokinetic properties and solubility studied. An increase in solubility results in a more positive zeta-potential. The cell dimensions have been determined from Guinier-Hägg diffraction data. Synthetic sabugalite crystallizes in the monoclinic system with space group C2/m and cell parameters: a=19.426 Å; b=9.843 Å; c=9.850 Å; α=γ=90°; β=96.161°; V=1,872.54 Å3 and Z=2.


Hydrogen Thermogravimetric Analysis Mineral Resource Infrared Spectrum Diffraction Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bulach A (1964) Berechnung von Mineralformeln. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  2. Chapman A, Thirlwell L (1964) Spectra of phosphorus compounds. I. IR spectra of orthophosphates. Spectrochim Acta 20:937–947Google Scholar
  3. Cohen M (1935) Precision lattice constants from X-ray powder photographs. Rev Sci Instrum 6:68–74Google Scholar
  4. Farmer V (1974) The infrared spectra of minerals. Mineralogical Society, Monograph 4, p 402Google Scholar
  5. Farzaneh B, Troll G (1977) Quantitative Hydroxyl- und Wasser-Bestimmungsmethode für Minerale, Gesteine und andere Festkörper. Fresenius Z Anal Chem 287:43–45Google Scholar
  6. Frondel C (1951) Studies of uranium minerals (VIII): Sabugalite, an aluminium-autunite. Am Mineral 36:671–679Google Scholar
  7. Frondel C (1958) Systematic mineralogy of uranium and thorium. Geological Survey Bulletin 1064. United States Government Printing Office, WashingtonGoogle Scholar
  8. Guillemin C, Pierrot R (1956) La sabugalite du gite de Margnac II Haute Vienne. Bull Soc Fr Mineral Cristallogr 79:179–182Google Scholar
  9. Jeffery P (1975) Chemical methods of rock analysis. Pergamon Press, OxfordGoogle Scholar
  10. Magin G, Jansen G, Levin B (1959) Synthesis of sabugalite. Am Mineral 44:419–422Google Scholar
  11. Michelsen O (1957) Photometric determination of phosphorus as molybdovanadophosphoric acid. Anal Chem 29:60–62Google Scholar
  12. Miller F, Wilkins C (1952) IR spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1292Google Scholar
  13. Moenke H (1962) Mineralspektren, I. Akademie-Verlag, BerlinGoogle Scholar
  14. Moenke H (1966) Mineralspektren, II. Akademie-Verlag, BerlinGoogle Scholar
  15. Ross M, Evans H Jr, Appleman D (1964) Study of the torbernite minerals: The crystal structure of meta-torbernite. Am Mineral 49:1603–1621Google Scholar
  16. Thompson W (1964) The IR spectra of crystalline K2HPO4 and (NH4)2HPO4 with partial assignments. J Chem Soc 371–373Google Scholar
  17. Visser J (1969) Zone indexing. J Appl Crystallogr 2:89Google Scholar
  18. Vochten R, Huybrechts W, Remaut G, Deliens M (1979) Formation of meta-torbernite starting from curite. Crystallographic data and electrokinetic properties. Phys Chem Minerals 4:281–290Google Scholar
  19. Vochten R, Deliens M (1980) Transformation of curite into metaautunite. Paragenesis and electrokinetic properties. Phys Chem Minerals 6:129–143Google Scholar
  20. Vochten R, Piret P, Goeminne A (1981) Synthesis, crystallographic data, solubility and electrokinetic properties of copper-, nickel- and cobalt-uranylphosphate. Bull Minéral 104:457–467Google Scholar
  21. Walenta K (1978) Uranospathite and arsenuranospathite. Mineral Mag 42:117–128Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Vochten
    • 1
  • J. Pelsmaekers
    • 2
  1. 1.Laboratorium voor chemische en fysische MineralogieUniversiteit AntwerpenAntwerpenBelgium
  2. 2.Studiecentrum voor KernenergieMolBelgium

Personalised recommendations