Psychological Research

, Volume 49, Issue 2–3, pp 99–106

The temporal architecture of central information processing: Evidence for a tentative time-quantum model

  • Hans-Georg Geissler
Article

Summary

A new, elaborated version of a time-quantum model (TQM) is outlined and illustrated by applying it to different experimental paradigms. As a basic prerequisite TQM adopts the coexistence of different discrete time units or (perceptual) intermittencies as constituent elements of the temporal architecture of mental processes. Unlike similar other approaches, TQM assumes the existence of an absolute lower bound for intermittencies, the time-quantum T, as an (approximately) universal constant and which has a duration of approximately 4.5 ms. Intermittencies of TQM must be multiples Tk=k·T* within the interval T*TkL·T*M·T* with T*=q·T and integer q, k, L, and M. Here M denotes an upper bound for multipliers characteristic of individuals, the so-called coherence length; q and L may depend on task, individual and other factors. A second constraint is that admissible intermittencies must be integer fractions of L, the operative upper bound. In addition, M is assumed to determine the number of elementary information units to be stored in short-term memory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 59, 365–406.Google Scholar
  2. Ansbacher, H. L. (1944). Distortion in the perception of movement. Journal of Experimental Psychology, 34, 1–23.Google Scholar
  3. Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In D. M. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology I. San Francisco, CA: W. H. Freeman.Google Scholar
  4. Baer, K. E. v. (1864). Welche Auffassung der lebendigen Natur ist die richtige? und wie ist diese Auffassung auf Entomologie anzuwenden? In Reden gehalten in wiss. Versammlungen und kleine Aufsätze vermischten Inhalts, pp. 237–283, St. Petersburg.Google Scholar
  5. Bekešy, G. von (1936) Low-frequency thresholds for hearing and feeling. Annalen der Physik, 26, 554–566.Google Scholar
  6. Brown, H. L., & Kirsner, K. (1980). A within-subject analysis of the relationship between memory span and processing rate in short-term memory. Cognitive Psychology, 12, 1977–1987.Google Scholar
  7. Buffart, H., & Geissler, H.-G. (1984). Task-dependent representation of categories and memory-guided inference during classification. In E. Degreef & J. van Buggenhaut (Eds.), Trends in mathematical psychology. Amsterdam: North-Holland.Google Scholar
  8. Buffart, H., Geissler, H.-G., & van Leeuwen, K. (1984). Unpublished experiments on quantized processing in perception. Nijmegen.Google Scholar
  9. Cavanagh, J. P. (1972). Relation between immediate memory span and the memory search rate. Psychological Review, 79, 525–530.Google Scholar
  10. Craik, K. J. (1948). Theory of human operators in control systems. I. The operator as an engineering system. British Journal of Psychology, 38, 56–61.Google Scholar
  11. Ganz, L. (1974). Temporal factors in visual perception. In C. Carterette & M. P. Friedman (Eds.) Handbook of perception: Vol. V, Seeing (Chapter 6, pp. 169–232). New York: Academic Press.Google Scholar
  12. Geissler, H.-G. (1985). Sources of seeming redundancy in temporally quantized information processing. In G. d'Ydewalle (Ed.), Cognitive information processing and motivation. Selected/Revised papers, Vol. 3, 23rd International Congress of Psychology. Amsterdam: North-Holland.Google Scholar
  13. Geissler, H.-G. (1986) Zeitquantenhypothese zur Struktur ultraschneller Gedächtnisprozesse. Zeitschrift für Psychologie, 193, 347–362.Google Scholar
  14. Geissler, H.-G., & Buffart, H. (1985). Task-dependency and quantized processing in classification. In G. d'Ydewalle (Ed.), Cognitive information processing and motivation. Selected/Revised papers, Vol. 3, 23rd International Congress of Psychology. Amsterdam: North-Holland.Google Scholar
  15. Geissler, H.-G., Schmidt, K.-D., & Ackermann, B. (1986). Temporally quantized processing in visual perception. In F. Klix (Ed.), In memoriam Herrmann Ebbinghaus. Amsterdam: North-Holland.Google Scholar
  16. Harter, M. R. (1967). Excitability cycles and cortical scanning: A review of two hypotheses of central intermittency in perception. Psychological Bulletin, 68, 47–58.Google Scholar
  17. Hendrickson, A. E. (1972). An integrated molar/molecular model of the brain. Psychological Reports, 30, 343–368.Google Scholar
  18. Hendrickson, D. E., & Hendrickson, A. E. (1980). The biological basis of individual differences in intelligence. Personality and Individual Differences, 1, 3–33.Google Scholar
  19. Holt-Hansen, K. (1970). Perception of a straight line briefly exposed. Perceptual and Motor Skills, 31, 59–69.Google Scholar
  20. Holt-Hansen, K. (1973). Experienced lengthening and shortening of a straight line fixated in the middle and briefly exposed. Perceptual and Motor Skills, 36, 1023–1029.Google Scholar
  21. Holt-Hansen, K. (1974). Duration of experienced lengthening and shortening of straight lines. Perceptual and Motor Skills, 39, 987–996.Google Scholar
  22. Holt-Hansen, K. (1975). Duration of experienced expansion and contraction of a circle. Perceptual and Motor Skills, 41, 507–518.Google Scholar
  23. Klix, F., & Hoffmann, J. (1978). The method of sentence-picture comparison as a possibility for analysing representation of meaning in human long-term memory. In F. Klix (Ed.), Human and artifical intelligence, Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  24. Klix, F., & van der Meer, E. (1978). Analogical reasoning — an approach to mechanisms underlying human intelligence performances. In F. Klix (Ed.), Human and artificial intelligence, Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  25. Köhler, W., Held, R., & O'Connell, D. N. (1952). An investigation of cortical currents. Proceedings of the American Philosophical Society, 96, 290–330.Google Scholar
  26. Köhler, W., & O'Connell, D. N. (1957). Currents of visual cortex in the cat. Journal of Cellular and Comparative Physiology, 49, Suppl. 2, 1–43.Google Scholar
  27. Kristofferson, A. B. (1967 a). Attention and psychophysical time. Acta Psychologica, 27, 93–100.Google Scholar
  28. Kristofferson, A. B. (1967 b). Successiveness discrimination as a two-state, quantal process. Science, 158, 1337–1339.Google Scholar
  29. Kristofferson, A. B. (1980). A quantal step function in duration. Perception & Psychophysics, 27, 300–306.Google Scholar
  30. Kristofferson, A. B. (1984). Quantal and deterministic timing in human duration discrimination. Annals of the New York Academy of Sciences, 423, 3–15.Google Scholar
  31. Latour, P. L. (1967). Evidence of internal clocks in the human operator. Acta Psychologica, 27, 341–348.Google Scholar
  32. Lebedev, A. N. (1976). On the neurophysiological basis of quantitative regularities in psychology. In H.-G. Geissler & Y. M. Zabordin (Eds.), Advances in psychophysics (pp. 411–416). Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  33. Lebedev, A. N. (1982). Note on the equations for speed and capacity of perception. The skeleton of a physiological theory. In H.-G. Geissler & P. Petzold (Eds.), Psychophysical judgment and the process of perception. Amsterdam: North-Holland.Google Scholar
  34. McReynolds, P. (1953). Thinking conceptualized in terms of interacting moments. Psychological Review, 60, 319–330.Google Scholar
  35. Michon, J. A. (1965). De perceptie van duur. Nederlandsche Tijdschrift voor de Psychologie, 20, 391–418.Google Scholar
  36. Michon, J. A. (1967). Timing in temporal tracking. Assen: van Gorcum.Google Scholar
  37. Neumann, O. (1983). Moment. In J. Ritter & K. Gründer (Eds.), Historisches Wörterbuch der Philosophie (Vol. 6, S. 108–114). Basel, Stuttgart: Schwabe.Google Scholar
  38. Puckett, J. M., & Kausler, D. H. (1984). Individual differences and models of memory span: A role for memory search rate? Journal of Experimental Psychology: Learning, Memory and Cognition, 10, 72–82.Google Scholar
  39. Rawlins, J. N. P. (1985). Associations across time: The hippocampus as a temporary memory store. The Behavioral and Brain Sciences, 8, 479–496.Google Scholar
  40. Stadler, M., & Erke, H. (1968). Über einige periodische Vorgänge in der Figuralwahrnehmung. Vision Research, 8, 1081–1092.Google Scholar
  41. Staude, A. (1985). Zur Prüfung der Cavanagh-Hypothese über den Zusammenhang von Gedächtnissuchrate und Gedächtnisspanne durch interdisziplinären Vergleich. Unpublished diploma thesis. KMU, Leipzig.Google Scholar
  42. Stebel, J. (1980). Chronobiologische Forschungsaspekte am Carl-Ludwig-Institut. Wissenschaftliche Zeitschrift der Karl-Marx-Universität, Mathematisch-Naturwissenschaftliche Reihe, 29, Jg. 2, 181–189.Google Scholar
  43. Stebel, J. (1981). Feinstruktur-Spektralanalyse von Biorhythmen im Sekunden-Minutenbereich. In Abhandlungen der AdW der DDR, Abt. Mathematik, Naturwissenschaften, Technik, Jg. 1979, Nr. 1 N. Berlin: Akademie Verlag.Google Scholar
  44. Stebel, J., Sinz, R., & Kirmse, W. (1968). Über periodische Schwankungen des Kurzzeitgedächtnisses beim Menschen. In H. Drischel & N. Tiedt (Eds.), Biokybernetik. Leipzig: KMU Print.Google Scholar
  45. Sternberg, S. (1969), The discovery of processing stages: Extensions of Donders' method. In W. G. Koster (Ed.), Attention and performance II (pp. 276–315). Amsterdam: North Holland.Google Scholar
  46. Stroud, J. M. (1955). The fine structure of psychological time. In H. Quastler (Ed.), Information theory in psychology (pp. 174–207). Glencoe, Ill.: Free Press.Google Scholar
  47. Uttal, W. (1970). Violations of visual simultaneity. Perception & Psychophysics, 7, 133–136.Google Scholar
  48. Vanagas, V., Balkelite, O., Bartusyavitchus, E. & Kiryalis, D. (1976). The quantum character of recognition processes in human vision (in Russian). In V. D. Glezer (Ed.), Information processing in the visual system. Leningrad: Academy of Sciences of the USSR.Google Scholar
  49. Vroon, P. (1974). Is there a time quantum in duration experience? American Journal of Psychology, 87, 237–245.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Hans-Georg Geissler
    • 1
  1. 1.Sektion PsychologieKarl Marx Universität LeipzigLeipzigGerman Democratic Republic

Personalised recommendations