Psychological Research

, Volume 38, Issue 2, pp 175–187 | Cite as

Psychophysical study of numbers

IV. Generalized preferred state theory
  • John C. Baird
Article

Summary

The theory described in this paper is concerned with the perceptual and cognitive processes underlying psychophysical laws. The theory is a generalization of a model used to predict a subject's conception of the number continuum. It is assumed that all physical attributes (including numbers) undergo a perceptual transformation in terms of the operation of mathematical base systems. Different stimulus attributes are transformed by different bases, leading to transformed intensity values which are “preferred states.” Several new psychophysical equations are developed and compared with the laws of Fechner and Stevens.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attneave, F.: Perception and related areas. In: Psychology: A study of a science, Vol. 4 (Koch, S., Ed.). New York: McGraw-Hill 1962Google Scholar
  2. Baird, J. C.: A cognitive theory of psychophysics. I. Information transmission, partitioning, and Weber's law. Scand. J. Psychol. 11, 35–46 (1970a)Google Scholar
  3. Baird, J. C.: A cognitive theory of psychophysics. II. Fechner's law and Stevens' law. Scand. J. Psychol. 11, 89–102 (1970b)Google Scholar
  4. Baird, J. C.: Information processing in alternative visual spaces. In: Human space perception: Proceedings of the Dartmouth conference (Baird, J. C., Ed.). Psychonomic Monogr. Suppl. 3, (Whole No. 45) (1970c)Google Scholar
  5. Baird, J. C., Lewis, C., Romer, D.: Relative frequencies of numerical responses in ratio estimation. Perception and Psychophysics 8, 358–362 (1970)Google Scholar
  6. Baird, J. C., Noma, E.: Psychophysical study of numbers. I. Generation of numerical responses. Psychol. Res. 37, 281–298 (1975)Google Scholar
  7. Banks, W. P., Hill, D. K.: The apparent magnitude of number scaled by random production. J. exp. Psychol. Monogr. 102, (No. 2) (1974)Google Scholar
  8. Eisler, H., Montgomery, H.: On theoretical and realizable ideal conditions in psychophysics: Magnitude and category scales and their relation. Göteborg Psychological Reports, The University of Göteborg 2, No. 16 (1972)Google Scholar
  9. Ekman, G.: Is the power law a special case of Fechner's law? Perceptual and Motor Skills 19, 73 (1964)Google Scholar
  10. Ekman, G., Sjöberg, L.: Scaling. Annual Review of Psychology 16, 451–474 (1965)Google Scholar
  11. Engen, T.: Psychophysics. II. Scaling Methods. In: Woodworth and Schlosberg's experimental psychology (Kling, J. W., Riggs, L. A., Eds.). New York: Holt, Rinehart, & Winston, Inc. 1971Google Scholar
  12. Fechner, G.: Elemente der psychophysik, Vol. II. Leipzig: Breitkopf and Hartel 1907Google Scholar
  13. Freides, D., Phillips, P.: Power law fits to magnitude estimates of groups and individuals. Psychonomic Sci. 5, 367–368 (1966)Google Scholar
  14. Guilford, J. P.: Psychometric methods. New York: McGraw-Hill 1954Google Scholar
  15. Graf, V., Baird, J. C., Glesman, G.: An empirical test of two psychophysical models. Acta psychol. 38, 59–72 (1974)Google Scholar
  16. Helson, H.: Adaptation-level theory. New York: Harper and Row 1964Google Scholar
  17. Luce, R. D., Edwards, W.: The derivation of subjective scales from just-noticeable differences. Psychol. Rev. 65, 222–237 (1958)Google Scholar
  18. Luce, R. D., Mo, S. S.: Magnitude estimation of heaviness and loudness by individual subjects: A test of a probabilistic response theory. British Journal of Mathematical and Statistical Psychology 18, 159–174 (1965)Google Scholar
  19. Marks, L. E.: Stimulus range, number of categories, and form of the category scale. Amer. J. Psychol. 81, 467–479 (1968)Google Scholar
  20. McGill, W.: The slope of the loudness function: A puzzle, p. 67–81. In: Psychological scaling: Theory and applications (Gulliksen, H., Messick, S., Eds.). New York: Wiley 1960Google Scholar
  21. Noma, E., Baird, J. C.: Psychophysical study of numbers. II. Theoretical models of number generation. Psychol. Res. 38, 81–96 (1975)Google Scholar
  22. Poulton, E. C.: The new psychophysics: Six models for magnitude estimation. Psychol. Bull. 69, 1–19 (1968)Google Scholar
  23. Pradhan, P. L., Hoffman, P. J.: Effect of spacing and range of stimuli on magnitude estimation judgments. J. exp. Psychol. 66, 533–541 (1963)Google Scholar
  24. Rule, S. J., Curtis, D. W.: Conjoint scaling of subjective number and weight. J. exp. Psychol. 97, 305–309 (1973)Google Scholar
  25. Stevens, S. S.: On the operation known as judgment. American Scientist 54, 385–401 (1966)Google Scholar
  26. Stevens, S. S.: Neural events and the psychophysical law. Science 170, 1043–1050 (1970)Google Scholar
  27. Stevens, S. S.: Issues in psychophysical measurement. Psychol. Rev. 78, 426–450 (1971)Google Scholar
  28. Stevens, S. S., Galanter, E. H.: Ratio scales and category scales for a dozen perceptual continua. J. exp. Psychol. 54, 377–411 (1957)Google Scholar
  29. Teghtsoonian, R.: On the exponents in Stevens' law and the constant in Ekman's law. Psychol. Rev. 78, 71–80 (1971)Google Scholar
  30. Treisman, M.: Sensory scaling and the psychophysical law. Quart. J. exp. Psychol. 16, 11–22 (1964)Google Scholar
  31. Wandmacher, J.: Die Trennung von sensorischen und Urteilsprozessen bei der Grössen-und Verhältnisschätzung. Doctoral dissertation, University of Hamburg 1970Google Scholar
  32. Warren, R. M.: Visual intensity judgments: An empirical rule and a theory. Psychol. Rev. 76, 16–30 (1969)Google Scholar
  33. Weissmann, S. M., Hollingsworth, S. R., Baird, J. C. Psychophysical study of numbers. III. Methodological applications. Psychol. Res. 38, 97–115 (1975)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • John C. Baird
    • 1
  1. 1.Department of PsychologyDartmouth CollegeHanoverUSA

Personalised recommendations