Advertisement

Physics and Chemistry of Minerals

, Volume 14, Issue 6, pp 514–520 | Cite as

Residual electron density at theM2 site inC2/c clinopyroxenes: Relationships with bulk chemistry and sub-solidus evolution

  • G. Rossi
  • R. Oberti
  • A. Dal Negro
  • G. M. Molin
  • M. Mellini
Article

Abstract

The systematic study of both natural and synthetic clinopyroxenes often indicates the presence in the difference Fourier map of a maximum of residual density of up to 0.8 electrons, here labelledM2′, close to theM2 site along the diad axis, defining a square pyramid co-ordination polyhedron. To investigate the nature and the crystalchemical implications of this feature, a limited but representative set of clinopyroxenes of volcanic, metamorphic and synthetic origin has been investigated by X-ray structure refinement (at 0.7 and 0.4 Å resolution), by microprobe analysis and by transmission electron microscopy. The most important results are: a) at increasing resolution, the height of theM2′ peak increases while its co-ordinates move towardM2; b) as (Ca + Na) content approaches 1.0 atom per formula unit,M2′ vanishes; c)M2′ has been found in clinopyroxenes which show differing incipient exsolution microstructures, from spinodal decomposition to non-periodic fluctuations, as well as in homogeneous specimens. The presence ofM2′ is interpreted in terms of the simultaneous coexistence in the crystals of two different structural models, approximately diopside and clinoenstatite. An accurate evaluation of the totalM2 + M2′ site occupancy is strongly suggested in XREF work, particularly when thermodynamic and kinetic considerations have to be obtained with accurate determinations of site occupancy factors as a starting point.

Keywords

Diopside Spinodal Decomposition Site Occupancy Residual Density Occupancy Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen T, Griffin WL, O'Reilly SY (1987) Primary sulphide melt inclusions in mantle-derivated megacrysts and pyroxenites. Lithos (in press)Google Scholar
  2. Beeson MH, Jackson ED (1970) Origin of the garnet pyroxenite xenoliths of Salt Lake Crater, Oahu. Mineral Soc Am Spec Pap 3:96–112Google Scholar
  3. Bruno E, Carbonin S, Molin GM (1982) Crystal structures of Carich clinopyroxenes in the CaMgSi2O6-Mg2Si2O6 join. Tschermaks Mineral Petrogr Mitt 29:223–240Google Scholar
  4. Buseck PR, Nord GL Jr, Veblen DR (1980) Subsolidus phenomena in pyroxenes. In: Prewitt CT (ed) Reviews in Mineralogy. VII. Pyroxenes. Mineralogical Society of America, Washington DC, pp 117–211Google Scholar
  5. Cameron M, Papike JJ (1980) Crystal-chemistry of silicate pyroxenes. In: Prewitt CT (ed) Reviews in Mineralogy. VII. Pyroxenes. Mineralogical Society of America, Washington DC, pp 5–92Google Scholar
  6. Carbonin S, Dal Negro A, Molin GM, Munno R, Rossi G, Lirer L, Piccirillo EM (1984) Crystal-chemistry of Ca-rich pyroxenes from undersaturated to oversaturated trachytic rocks, and their relationships with pyroxenes from basalts. Lithos 17:191–202Google Scholar
  7. Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral Soc Am Spec Pap 2:31–50Google Scholar
  8. Dal Negro A, Carbonin S, Molin GM, Cundari A, Piccirillo EM (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional and alkaline basaltic rocks. In: Saxena SK (ed) Advances in Physical Geochemistry, vol 2. Springer, New York NY, pp 117–150Google Scholar
  9. Dal Negro A, Carbonin S, Domeneghetti MC, Molin GM, Cundari A, Piccirillo EM (1984) Crystal-chemistry and evolution of the clinopyroxenes in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia. Contrib Mineral Petrol 86:221–229Google Scholar
  10. Dal Negro A, Cundari A, Piccirillo EM, Molin GM, Uliana D (1986) Distinctive crystal chemistry and site configuration of the clinopyroxene from alkali basaltic rocks: the Nyambeni clinopyroxene suite, Kenya. Contrib Mineral Petrol 92:35–43Google Scholar
  11. Dickey JS jr (1968) Eclogitic and other inclusions in the mineral breccia member of the Deborah volcanic formation at Kakanui, New Zealand. Am Mineral 53:1304–1319Google Scholar
  12. Domeneghetti MC, Molin GM, Tazzoli V (1985) Crystal-chemical implications of the Mg2+-Fe2+ distribution in orthopyroxenes. Am Mineral 70:987–995Google Scholar
  13. Griffin WL, Mellini M, Oberti R, Rossi G (1985) Evolution of coronas in Norwegian anorthosites: re-evaluation based on crystal-chemistry and microstructures. Contrib Mineral Petrol 91:330–339Google Scholar
  14. Griffin WL, O'Reilly SY (1986) Mantle-derived sapphirine. Mineral Mag 50:635–640Google Scholar
  15. James F, Ross M (1975) MINUIT, a system for function minimisation and analysis of the parameter errors and correlations. Computer Phys 10:343–347, CERN/DD, International Report 75/20Google Scholar
  16. Megaw HD (1968a) A simple theory of the off-centre displacement of cations in octahedral environments. Acta Crystallogr Sec B 24:149–153Google Scholar
  17. Megaw HD (1968b) A note on the structure of lithium niobate, Acta Crystallogr Sec A 24:583–588Google Scholar
  18. Mellini M (1981) Refinement of the crystal structure of låvenite. Tschermaks Mineral Petrol Mitt 28:99–112Google Scholar
  19. Mellini M (1982) Niocalite revised: twinning and crystal structure. Tschermaks Mineral Petrol Mitt 30:249–266Google Scholar
  20. Mellini M (1985) Le microstrutture: loro fenomenologia e significato mineralogico. Rend Soc Ital Mineral Petrol 40:229–240Google Scholar
  21. Mellini M, Menichini M (1985) Proportionality factors for thin film TEM-EDS microanalysis of silicate minerals. Rend Soc Ital Mineral Petrol 40:261–266Google Scholar
  22. Mellini M, Merlino S (1979) Refinement of the crystal structure of wohlerite. Tschermaks Mineral Petrol Mitt 26:109–123Google Scholar
  23. Mellini M, Oberti R, Rossi G (1983) Crystal-chemistry and microstrucures of pyroxenes and amphiboles in the coronas of the Bergen Arcs and of the Sognefjord region, Western Norway. Period Mineral 52:583–615Google Scholar
  24. Morimoto N, Nahajima Y, Akimoto S, Matsui Y (1975) Crystal structures of pyroxene-type ZnSiO3 and ZnMgSi2O6. Acta Crystallogr Sec B 31:1041–1049Google Scholar
  25. Nord GL, McCallister RH (1983) Spinodal decomposition microstructures in synthetic pyroxenes. Proc 41st Ann Meet Electron Microscopy Soc of America. San Francisco Press, San Francisco, pp 182–185Google Scholar
  26. Oberti R, Munno R, Foresti E, Krajewski A (1983) A crystal chemical study on six fassaites from the Predazzo-Monzoni Area. Rend Soc Ital Mineral Petrol 38:649–655Google Scholar
  27. Ohashi Y, Burnham CW, Finger L (1975) The effect of Ca-Fe substitution on the clinopyroxene crystal structure. Am Mineral 60:423–434Google Scholar
  28. Ribbe PH, Megaw HD, Taylor WH, Ferguson RB, Traill RJ (1969) The albite structure. Acta Crystallogr Sec B 25:1503–1518Google Scholar
  29. Rossi G, Tazzoli V, Ungaretti L (1978) Crystal-chemical studies on sodic clinopyroxenes. XI Gen Meet I.M.A. [Abstract] 1:29Google Scholar
  30. Rossi G, Tazzoli V, Ungaretti L (1981) Crystal-chemical studies on sodic clinopyroxenes. Proc XI Gen Meet I.M.A. Rock-forming minerals: 20–45Google Scholar
  31. Rossi G, Smith DC, Ungaretti L, Domeneghetti MC (1983) Crystal chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contrib Mineral Petrol 83:247–258Google Scholar
  32. Sasaki S, Takeuchi Y, Fuyino K, Akimoto S (1982) Electron density distribution of three orthopyroxenes, Mg2Si2O6, Ca2Si2O6 and Fe2Si2O6. Z Kristallogr Mineral 158:279–297Google Scholar
  33. Self PG, Buseck PR (1983) High resolution structure determination by ALCHEMI. Proc 41st Ann Meet of the Electron Microscopy Soc of America. San Francisco press, San Francisco, pp 178–181Google Scholar
  34. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sec B 25:925–946Google Scholar
  35. Veblen DR, Buseck PR (1983) Radiation effects on minerals in the electron microscope. Proc 41st Ann Meet Electron Microscopy Soc of America. San Francisco Press, San Francisco, pp 350–353Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. Rossi
    • 1
  • R. Oberti
    • 1
  • A. Dal Negro
    • 2
  • G. M. Molin
    • 2
  • M. Mellini
    • 3
  1. 1.Centro di Studio per la Cristallografia StrutturaleCNRPaviaItaly
  2. 2.Centro di Studio per l'Orogeno delle Alpi OrientaliCNRPadovaItaly
  3. 3.Dipartimento di Scienze della TerraPiazza UniversitàPerugiaItaly

Personalised recommendations