Physics and Chemistry of Minerals

, Volume 13, Issue 4, pp 215–220 | Cite as

High-Pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): Comparisons with silicate spinels

  • Larry W. Finger
  • Robert M. Hazen
  • Anne M. Hofmeister


High-pressure crystal structures and compressibilities have been determined by x-ray methods for MgAl2O4 spinel and its isomorph magnetite, Fe3O4. The measured bulk moduli, K, of spinel and magnetite (assuming K′=4) are 1.94±0.06 and 1.86±0.05 Mbar, respectively, in accord with previous ultrasonic determinations. The oxygen u parameter, the only variable atomic position coordinate in the spinel structure (Fd3m, Z=8), decreases with pressure in MgAl2O4, thus indicating that the magnesium tetrahedron is more compressible than the aluminum octahedron. In magnetite the u parameter is unchanged, and both tetrahedron and octahedron display the 1.9 Mbar bulk modulus characteristic of the entire crystal. This behavior contrasts with that of nickel silicate spinel (γ-Ni2SiO4), in which the u parameter increases with pressure because the silicon tetrahedron is relatively incompressible compared to the nickel octahedron.


Fe3O4 Magnetite Compressibility Bulk Modulus Spinel Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Finger LW, Hazen RM, Yagi T (1979) Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure. Am Mineral 64:1002–1009Google Scholar
  2. Finger LW, King HE (1978) A revised method of operation of the single-crystal diamond cell and refinement of the structure of NaCl at 32 kbar. Am Mineral 63:337–342Google Scholar
  3. Fleet ME (1981) The structure of magnetite. Acta Crystallogr B37:917–920Google Scholar
  4. Hamilton WC (1974) Angle settings for four-circle diffractometers. In: International Tables for X-ray Crystallography, 4. Kynoch Press, Birmingham, England, pp 273–284Google Scholar
  5. Harrison HR, Aragon R (1978) Skull melter growth of magnetite (Fe3O4). Mat Res Bull 13:1097–1104Google Scholar
  6. Hazen RM (1986) High-pressure crystal chemistry of chrysoberyl, Al2BeO4: Insights on the origin of olivine elastic anisotropy. Phys Chem Mineral: in pressGoogle Scholar
  7. Hazen RM, Finger LW (1979) Bulk-modulus-volume relationship for cation-anion polyhedra. J Geophys Res 84:6723–6728Google Scholar
  8. Hazen RM, Finger LW (1982) Comparative Crystal Chemistry. Wiley, New YorkGoogle Scholar
  9. Hazen RM, Finger LW, Mariathasan JWE (1985) High-pressure crystal chemistry of scheelite-type tungstates and molybdates. J Phys Chem Solids 46:253–263Google Scholar
  10. Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Phys Chem Mineral 4:317–339Google Scholar
  11. Ishii M, Hiraishi J, Yamanaka Y (1982) Structure and lattice vibrations of Mg-Al spinel solid solution. Phys Chem Mineral 8:64–68Google Scholar
  12. King HE, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Crystallogr 12:374–378Google Scholar
  13. Lehmann MS, Larsen MK (1974) A method for location of the peaks in step-scan-measured Bragg reflections. Acta Crystallogr A30:580–584Google Scholar
  14. Mao KH, Takahashi T, Bassett WA, Kinsland GL, Merrill L (1974) Isothermal compression of magnetite to 320 kbar and pressure-induced phase transformation. J Geophys Res 79:1165–1170Google Scholar
  15. Swanson DK, Weidner DJ, Prewitt CT, Kandelin JJ (1985) Single crystal compression of γ-Mg2SiO4 (abstract). Trans Am Geophys Union (EOS) 66:370Google Scholar
  16. Ralph RL, Finger LW (1982) A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constants. J Appl Crystallogr 15:537–539Google Scholar
  17. Wang H, Simmons G (1972) Elasticity of some mantle crystal structures 1. Pleonaste and hercynite spinel. J Geophys Res 77:4379–4392Google Scholar
  18. Yamanaka T, Takeuchi Y (1983) Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1,700° C. Z Kristallogr 165:65–78Google Scholar
  19. Yamanaka T, Takeuchi Y, Tokonami M (1984) Anharmonic thermal vibrations of atoms in MgAl2O4 spinel at temperatures up to 1,933 K. Acta Crystallogr B40:96–102Google Scholar
  20. Zachariasen WH (1967) A general theory of x-ray diffraction in crystals. Acta Crystallogr 23:558–564Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Larry W. Finger
    • 1
  • Robert M. Hazen
    • 1
  • Anne M. Hofmeister
    • 1
  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashington, DCUSA

Personalised recommendations