Theoretical and Applied Genetics

, Volume 65, Issue 3, pp 181–189

Chloroplast DNA evolution and the origin of amphidiploid Brassica species

  • J. D. Palmer
  • C. R. Shields
  • D. B. Cohen
  • T. J. Orton
Article

Summary

The origin and evolution of a hybrid species complex in the genus Brassica (cabbage, turnip, mustard, rapeseed oil) has been explored through mutational analysis of the maternally inherited chloroplast genome. A detailed chloroplast DNA phylogeny enables identification of the maternal parent for most of the amphidiploids examined and permits quantitative resolution of the relative time of hybridization as well as the relative divergence of the diploid parents. Contradictory chloroplast and nuclear phylogenies obtained for two accessions of the amphidiploid B. napus (rapeseed oil) lead to the hypothesis that introgressive hybridization has also figured in their recent evolution.

Key words

Polyploidy Brassica Evolution of chloroplast DNA Phylogenetic tree Restriction endonucleases 

Abbreviations

kb

kilobase pairs

bp

base pairs

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson E (1953) Introgressive hybridization. Biol Rev 28:280–307Google Scholar
  2. Avise JC, Giblin-Davidson C, Laerm J, Patton JC, Lansman RA (1979 a) Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proc Natl Acad Sci USA 76:6694–6698Google Scholar
  3. Avise JC, Lansman RA, Shade RO (1979b) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. 1. Population structure and evolution in the genus Peromyscus. Genetics 92:279–295Google Scholar
  4. Berggren G (1962) Reviews on the taxonomy of some species of the genus Brassica, based on their seeds. Sv Bot Tidskr 56:65–135Google Scholar
  5. Bovenberg WA, Kool AJ, Nijkamp HJJ (1981) Isolation, characterization and restriction endonuclease mapping of the Petunia hybrida chloroplast DNA. Nucleic Acids Res 9:503–517Google Scholar
  6. Brown GG, Simpson MV (1981) Intra- and interspecific variation of the mitochondrial genome in Rattus norvegicus and Rattus rattus: restriction enzyme analysis of variant mitochondrial DNA molecules and their evolutionary relationships. Genetics 97:125–143Google Scholar
  7. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971Google Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239Google Scholar
  9. Clausen J, Keck DD, Hiesey WM (1945) Plant evolution through amphiploidy and autoploidy with examples from the Madiinae. Carnegie Inst Washington Publ 564:1–174Google Scholar
  10. Crawford DJ, Giannasi DE (1982) Plant chemosystematics. Bioscience 32:114–124Google Scholar
  11. Dass H, Nybom H (1967) The relationships between Brassica nigra, B. campestris, B. oleracea, and their amphidiploid hybrids studied by means of numerical chemotaxonomy. Can J Genet Cytol 9:880–890Google Scholar
  12. Dewet JMJ (1980) Origin of polyploids. In: Lewis WH (ed) Polyploids. Biological relevance. Plenum, New York, pp 3–15Google Scholar
  13. Ferris SD, Wilson AC, Brown WM (1981) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci USA 78:2432–2436Google Scholar
  14. Fluhr R, Edelman M (1981) Conservation of sequence arrangement among higher plant chloroplast DNAs: molecular cross hybridization among the Solanaceae and between Nicotiana and Spinacia. Nucleic Acids Res 9:6841–6853Google Scholar
  15. Gatenby AA, Cocking EC (1978) The evolution of fraction 1 protein and the distribution of the small subunit polypeptide coding sequences in the genus Brassica. Plant Sci Lett 12:299–303Google Scholar
  16. Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenthera. Theor Appl Genet 61:373–384Google Scholar
  17. Grant V (1981) Plant speciation. Columbia University, New York, pp 1–563Google Scholar
  18. Gray JC (1980) Fraction 1 protein and plant phylogeny. In: Bisby FA, Vaughan JG, Wright CA (eds) Systematics association — special vol 16, Chemosystematics: principles and practice. Academic Press, London New York, pp 167–193Google Scholar
  19. Karpechenko GD (1924) Hybrids of Raphanus sativus × Brassica oleracea L. J Genet 14:375–396Google Scholar
  20. Kolodner R, Tewari KK (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402:372–390Google Scholar
  21. Kung SD, Zhu YS, Shen GF (1982) Nicotiana chloroplast genome. 3. Chloroplast DNA evolution. Theor Appl Genet 61:73–79Google Scholar
  22. Lebacq P, Vedel F (1981) Sal I restriction enzyme analysis of chloroplast and mitochondrial DNAs in the genus Brassica. Plant Sci Lett 23:1–9Google Scholar
  23. Link G (1981) Cloning and mapping of the chloroplast DNA sequence for two messenger RNAs from mustard (Sinapis alba L.). Nucleic Acids Res 9:3681–3694Google Scholar
  24. Link G, Chambers WE, Thompson JA, Falk H (1981) Size and physical organization of chloroplast DNA from mustard (Sinapis alba L.) Mol Gen Genet 181:454–457Google Scholar
  25. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. In: Grossmann L, Moldave K (eds) Methods in enzymology, vol 65 I Academic Press, New York, pp 499–560Google Scholar
  26. Olsson G (1960a) Species crosses within the genus Brassica. 1. Artificial Brassica juncea Coss. Hereditas 46:171–222Google Scholar
  27. Olsson G (1960b) Species crosses within the genus Brassica. 2. Artificial Brassica napus L. Hereditas 46:351–396Google Scholar
  28. Palmer JD (1982) Physical and gene mapping of chloroplast DNA from A triplex triangularis and Cucumis sativa. Nucleic Acids Res 10:1593–1605Google Scholar
  29. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93Google Scholar
  30. Palmer JD, Thompson WF (1981a) Clone banks of the mung bean, pea and spinach chloroplast genomes. Gene 15:21–26Google Scholar
  31. Palmer JD, Thompson WF (1981b) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537Google Scholar
  32. Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeated sequence is lost. Cell 29:537–550Google Scholar
  33. Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010Google Scholar
  34. Palmer JD, Edwards H, Jorgensen RA, Thompson WF (1982) Novel evolutionary variation in transcription and location of two chloroplast genes. Nucleic Acids Res 10:6819–6832Google Scholar
  35. Palmer JD, Singh GP, Pillay DTN (1983a) Structure and sequence evolution of three legume chloroplast DNAs. Mol Gen Genet (in press)Google Scholar
  36. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983b) An unusual mitochondrial DNA plasmid in the genus Brassica. Nature 301:725–728Google Scholar
  37. Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot 55:1–57Google Scholar
  38. Timothy DH, Levings CS III, Pring DR, Conde MF, Kermicle JL (1979) Organelle DNA variation and systematic relationships in the genus Zea: Teosinte. Proc Natl Acad Sci USA 76:4220–4224Google Scholar
  39. Tohdoh N, Sugiura M (1982) The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroplasts. Gene 17:213–218Google Scholar
  40. UN (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  41. Uchimiya H, Wildman SG (1978) Evolution of fraction 1 protein in relation to origin of amphidiploid Brassica species and other members of the Cruciferae. J Hered 69:299–303Google Scholar
  42. Vaughan JG (1977) A multidisciplinary study of the taxonomy and origin of Brassica crops. Bioscience 27:35–40Google Scholar
  43. Vedel F, Quetier F, Dosba F, Doussinault G (1978) Study of wheat phylogeny by EcoRI analysis of chloroplastic and mitochondrial DNAs. Plant Sci Lett 13:97–102Google Scholar
  44. Vedel F, Quetier F, Cauderon Y, Dosba F, Doussinault G (1981) Studies on maternal inheritance in polyploid wheats with cytoplasmic DNAs as genetic markers. Theor Appl Genet 59:239–245Google Scholar
  45. Verma SC, Rees H (1974) Nuclear DNA and the evolution of allotetraploid Brassica. Heredity 33:61–68Google Scholar
  46. Wildman SG (1979) Aspects of Fraction 1 protein evolution. Arch Biochem Biophys 196:598–610Google Scholar
  47. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46:573–639Google Scholar
  48. Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) The structure of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res 9:3251–3270Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. D. Palmer
    • 1
  • C. R. Shields
    • 2
  • D. B. Cohen
    • 3
  • T. J. Orton
    • 4
  1. 1.Carnegie Institution of WashingtonDepartment of Plant BiologyStanfordUSA
  2. 2.Department of Vegetable CropsUniversity of CaliforniaDavisUSA
  3. 3.Department of Agronomy and Range ScienceUniversity of CaliforniaDavisUSA
  4. 4.Agrigenetics CorporationBoulderUSA

Personalised recommendations