Cell and Tissue Research

, Volume 280, Issue 2, pp 455–462

Intermediate filament typing of the human embryonic and fetal notochord

  • Werner Götz
  • Michael Kasper
  • Gösta Fischer
  • Rainer Herken


In order to characterize human notochordal tissue we investigated notochords from 32 human embryos and fetuses ranging between the 5th and 13th gestational week, using immunohistochemistry to detect intermediate filament proteins cytokeratin, vimentin and desmin, the cytokeratin subtypes 7, 8, 18, 19 and 20, epithelial membrane antigen (EMA), and adhesion molecules pan-cadherin and E-cadherin. Strong immunoreactions could be demonstrated for pan-cytokeratin, but not for desmin or EMA. Staining for pan-cadherin and weak staining for E-cadherin was found on cell membranes of notochordal cells. Also it was demonstrated that notochordal cells of all developmental stages contain the cytokeratins 8, 18 and19, but not 7 or 20. Some cells in the embryonic notochord also contained some vimentin. Vimentin reactivity increased between the 8th and 13th gestational week parallel to morphological changes leading from an epithelial phenotype to the chorda reticulum which represents a mesenchymal tissue within the intervertebral disc anlagen. This coexpression reflects the epithelial-mesenchymal transformation of the notochord, which also loses E-cadherin expression during later stages. Our findings cannot elucidate a histogenetic germ layer origin of the human notochord but demonstrate its epithelial character. Thus, morphogenetic inductive processes between the human notochord and its surrounding vertebral column anlagen can be classified as epithelial-mesenchymal interactions.

Key words

Intermediate filaments Notochord Cytokeratins Cadherins Human, embryo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albelda SM (1993) Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Inv 68:4–17Google Scholar
  2. Albers K, Fuchs E (1992) The molecular biology of intermediate filament proteins. Int Rev Cytol 134:243–279Google Scholar
  3. Bader BL, Jahn L, Franke WW (1988) Low level expression of cytokeratins 8, 18 and 19 in vascular smooth muscle cells of human umbilical cord and in cultured cells derived therefrom, with an analysis of the chromosomal locus containing the cytokeratin 19 gene. Europ J Cell Biol 47:300–319Google Scholar
  4. Balling R, Ebensperger C, Hoffmann I, Imai K, Koseki H, Mizutani Y, Wallin J (1993) The genetics of skeletal development. Ann Génét 36:56–62Google Scholar
  5. Behrens J (1994) Cadherins as determinants of tissue morphology and suppressors of invasion. Act Anat 149:165–169Google Scholar
  6. Ben-Ze'ev A (1984) Differential control of cytokeratins and vimentin synthesis by cell-cell contact and cell spreading in cultured epithelial cells. J Cell Biol 99:1424–1433Google Scholar
  7. Bosman FT (1993) Integrins: cell adhesives and modulators of cell function. Histochem J 25:469–477Google Scholar
  8. Bouropoulou V, Bosse A, Roessner A, Vollmer E, Edel G, Wusimann P, Härle A (1989) Immunohistochemical investigation of chordomas: histogenetic and differential diagnostic aspects. Curr Top Pathol 80:183–203Google Scholar
  9. Broers JLV, Leij L de, Klein Rot M, Haar A ter, Lane EB, Leigh IM, Wagenaar SS, Vooijs GP, Ramaekers CS (1989) Expression of intermediate filament proteins in fetal and adult human lung tissues. Differentiation 40:119–128Google Scholar
  10. Bronner-Fraser M (1993) Mechanisms of neural crest cell migration. BioEssays 15:221–230Google Scholar
  11. Burger PC, Makek M, Kleihues P (1986) Tissue polypeptide staining of the chordoma and notochordal remnants. Acta Neuropathol (Berl) 70:269–272Google Scholar
  12. Carlson EC (1973) Intercellular connective tissue fibrils in the notochordal epithelium of the early chick embro. Am J Anat 136:77–90Google Scholar
  13. Coggi G, Dell'Orto P, Braidotti P, Coggi A, Viale G (1989) Coexpression of intermediate filaments in normal and neoplastic human tissues: a reappraisal. Ultrastruct Pathol 13:501–514Google Scholar
  14. Erickson CA, Perris R (1993) The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest. Dev Biol 159:60–74Google Scholar
  15. Erickson CA, Tucker RP, Edwards BF (1987) Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis. Differentiation 34:88–97Google Scholar
  16. Franke WW, Grund C, Kuhn C, Jackson BW, Ilmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23:43–59Google Scholar
  17. Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function and disease. Annu Rev Biochem 63:345–382Google Scholar
  18. Geiger B, Ayalon O (1992) Cadherins. Ann Rev Cell Biol 8:307–332Google Scholar
  19. Geiger B, Volberg T, Ginsberg D, Bitzur S, Sabanay J, Hynes RO (1991) Broad spectrum of pan-cadherin antibodies, reactive with the C-terminal 24 amino acid residues of N-Cadherins. J Cell Sci 97:607–614Google Scholar
  20. Godsave SF, Anderton BH, Wlie CC (1986) The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis. J Embryol Exp Morphol 97:201–223Google Scholar
  21. Götz W, Osmers R, Herken R (1995) Localization of extracellular matrix components in the embryonic human notochord and axial mesenchyme. J Anat (in press)Google Scholar
  22. Goldman RD, Steinert PM (1990) Cellular and molecular biology of intermediate filaments. Plenum Press, New York LondonGoogle Scholar
  23. Hall BK (1977) Chondrogenesis of the somitic mesoderm. Adv Anat Embryol Cell Biol 53:4–53Google Scholar
  24. Hay ED (1991) Collagen and other matrix glycoproteins in embryogenesis. In: Hay ED (ed) Cell biology of the extracellular matrix, 2nd edn. Plenum Press, New York London, pp 419–462Google Scholar
  25. Herrmann H, Fouquet B, Franke WW (1989) Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development 105:279–298Google Scholar
  26. Heyderman E, Strudley J, Powell G, Richardson TC, Cordell JC, Mason DY (1985) A new monoclonal antibody to epithelial membrane antigen (EMA)-E29. Comparison of its immunocytochemical reactivity with polyclonal ant-EMA antibodies and with another monoclonal antibody, HMFG-2. Br J Cancer 52:355–361Google Scholar
  27. Jurand A (1962) The development of the notochord in chick embryos. J Embryol Exp Morphol 10:602–621Google Scholar
  28. Jurand A (1974) Some aspects of the development of the notochord in mouse embryos. J Embrol Exp Morphol 32:1–33Google Scholar
  29. Karsten U, Papsdorf G, Roloff G, Stolley P, Abel H, Walther I, Weiss H (1985) Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion. Eur J Cancer Clin Oncol 21:733–740Google Scholar
  30. Kasper M (1992) Cytokeratins in intracranial and intraspinal tissues. Adv Anat Embryol Cell Biol 126:1–82Google Scholar
  31. Kasper M, Stosiek P (1990) The expression of vimentin in epithelial cells from human nasal mucosa. Eur Arch Otorhinolaryngol 248:53–56Google Scholar
  32. Kasper M, Karsten U, Stosiek P, Moll R (1989) Distribution of intermediate-filament proteins in the human enamel organ: unusual complex pattern of coexpression of cytokeratin polypeptides and vimentin. Differentiation 40:207–214Google Scholar
  33. Koseki H, Wallin J, Wilting J, Mizutani Y, Kispert A, Ebensperger C, Herrmann BG, Christ B, Balling R (1993) A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119:649–660Google Scholar
  34. Koskull H von, Virtanen I (1987) Induction of cytokeratin expression in human mesenchymal cells. J Cell Physiol 133:321–329Google Scholar
  35. Krech R, Loy V, Iglesias JR, Gerdes J, Stein H (1987) Immunhistologische Charakterisierung von Chordomen. Pathologe 8:207–212Google Scholar
  36. Kuruc N, Franke WW (1988) Transient coexpression of desmin and cytokeratins 8 and 18 in developing myocardial cells of some vertebrate species. Differentiation 38:177–193Google Scholar
  37. Lane EB (1993) Keratins. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Molecular, genetic, and medical aspects. Wiley-Liss, New York Chichester Brisbane, pp 237–248Google Scholar
  38. Larsen WJ (1993) Human Embryology. Churchill Livingstone, Edinburgh, LondonGoogle Scholar
  39. Laucrova L, Kovarik J, Bartek J, Rejthar A, Vojtesek B (1988) Novel monoclonal antibodies defining epitope of human cytokeratin 18 molecule. Hybridoma 7:495–504Google Scholar
  40. Makin C, Babrov LG, Bodmer WF (1984) Monoclonal antibody to cytokeratin for use in routine histopathology. J Clin Pathol 37:975–983Google Scholar
  41. Markl J (1991) Cytokeratins in mesenchymal cells: impact on functional concepts of the diversity of intermediate filament proteins. J Cell Sci 98:261–164Google Scholar
  42. Miettinen M (1993) Keratin immunohistochemistry: update of applications and pitfalls. Pathol Annu 28:113–143Google Scholar
  43. Minor RR (1973) Somite chondrogenesis. A structural analysis. J Cell Biol 56:27–50Google Scholar
  44. Moll R (1986) Epitheliale Tumormarker. Verh Dtsch Ges Pathol 70:28–50Google Scholar
  45. Moll R (1993) Cytokeratine als Differenzierungsmarker. Expressionsprofile von Epithelien und epithelialen Tumoren. Veröff Pathol 142:1–191Google Scholar
  46. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24Google Scholar
  47. Moll R, Hage C, Thoenes W (1991) Expression of intermediate filament proteins in fetal and adult human kidney: modulations of intermediate filament patterns during development and in damaged tissue. Lab Inv 65:74–86Google Scholar
  48. Moll R, Löwe A, Laufer J, Franke WW (1992) Cytokeratin 20 in human carcinomas: a new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 140:427–447Google Scholar
  49. Müller F, O'Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol 172:157–169Google Scholar
  50. Müller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176:413–430Google Scholar
  51. Murakami T, Wakamutsu E, Tamahashi N, Takahashi T (1985) The functional significance of human notochord in the development of vertebral column. An electron microscopic study. Tohoku J Exp Med 146:321–336Google Scholar
  52. Öbrink R (1993) Cell adhesion and cell-cell contact proteins. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix and adhesion proteins. Oxford University Press, Oxford New York Tokyo, pp 109–114Google Scholar
  53. Oosterwijk E, Van Muijen GNP, Oosterwijk-Wakka JC, Warnaar SO (1990) Expression of intermediate-sized filaments in developing and adult human kidney and in renal cell carcinoma. J Histochem Cytochem 38:385–392Google Scholar
  54. O'Rahilly R, Müller F (1987) Developmental stages in human embryos. Including a revision of streeter's “horizons” and a survey of the Carnegic collection (Carnegie Institution of Washington, Publication 637). Carnegie Institution, WashingtonGoogle Scholar
  55. Page M (1989) Changing patterns of cytokeratins and vimentin in the early chick embryo. Development 105:97–107Google Scholar
  56. Paranko J, Virtanen I (1986) Epithelial and mesenchymal cell differentiation in the fetal rat genital ducts: changes in the expression of cytokeratin and vimentin type of intermediate filaments and desmosomal plaque proteins. Dev Biol 117:135–145Google Scholar
  57. Petrali JP, Hinton DM, Moriaty GC, Sternberger LA (1974) The unlabeled antibody enzyme method of immunocytochemistry. J Histochem Cytochem 22:782–801Google Scholar
  58. Raju T, Adelman LS, Dahl D, Bignami A (1983) Localization of keratin in the notochord and in notochord-derived tumors —immunohistochemical study of rat embryo and human chordoma. Int J Dev Neurosci 1:375–382Google Scholar
  59. Ramaekers FCS, Feitz W, Moesker O, Schaart G, Herman C, Debruyne F, Vooijs P (1985) Antibodies to cytokeratin and vimentin in testicular tumour diagnosis. Virchows Arch [A] 408:127–142Google Scholar
  60. Salisbury JR, Isaacson PG (1985) Demonstration of cytokeratins and an epithelial membrane antigen in chordomas and human fetal notochord. Am J Surg Pathol 9:791–797Google Scholar
  61. Schaffer J (1930) Die Stützgewebe. In: Möllendorff W von (ed) Handbuch der mikroskopischen Anatomie des Menschen, Vol 2. Die Gewebe, 2nd part. Springer, Berlin, pp 1–390Google Scholar
  62. Sensenig EC (1949) The early development of the human vertebral column. Contrib Embryol 33:23–41Google Scholar
  63. Shimoyama Y, Hirohashi S, Hirano S, Noguchi M, Shimosato Y, Takeichi M, Abe O (1989) Cadherin cell adhesion molecules in human epithelial tissues and carcinomas. Cancer Res 49:2128–2133Google Scholar
  64. Shinohara H, Tanaka O (1988) Development of the notochord in human embryos: ultrastructural, histochemical, and immunohistochemical studies. Anat Rec 220:171–178Google Scholar
  65. Smedts F, Ramaekers F, Troyanovsky S, Prvszczynski M, Link M, Lane B, Leigh J, Schijf C, Voorijs P (1992) Keratin expression in cervical cancer. Am J Pathol 141:497–511Google Scholar
  66. Springer M (1972) Der Canalis neurentericus beim Menschen. Z Kinderchir 11:183–189Google Scholar
  67. Staagard M, Møllgård K (1989) The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. Anat Embryol 180:17–28Google Scholar
  68. Starck D (1979) Vergleichende Anatomie der Wirbeltiere auf entwicklungsbiologischer Grundlage. Vol. 2: Das Skeletsystem. Allgemeines, Skeletsubstanzen, Skelet der Wirbeltiere einschließlich Lokomotionstypen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  69. Steinert PM (1993) Structure, function, and dynamics of keratin intermediate filaments. J Invest Dermatol 100:729–734Google Scholar
  70. Stern CD (1990) Two distinct mechanisms for segmentation. Semin Dev Biol 1:109–116Google Scholar
  71. Stosiek P, Kasper M, Karsten U (1988) Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39:78–81Google Scholar
  72. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455Google Scholar
  73. Takeichi M (1993) Cadherins. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix and adhesion proteins. Oxford University Press, Oxford New York Tokyo, pp 116–118Google Scholar
  74. Taylor JR, Twomey LT (1988) The development of the human intervertebral disc. In: Ghosh P (ed) The biology of the intervertebral disc, vol 1. CRC Press, Boca Raton, pp 39–82Google Scholar
  75. Töndury G, Theiler K (1990) Entwicklungsgeschichte und Fehlbildungen der Wirbelsäule (Die Wirbelsäule in Forschung and Praxis, Vol 98). Hippokrates, StuttgartGoogle Scholar
  76. Van de Klundert FAJM, Raats JMH, Bloemendal H (1993) Intermediate filaments: regulation of gene expression and assembly. Eur J Biochem 214:351–366Google Scholar
  77. Van Muijen GNP, Ruiter DJ, Warnaar SO (1987) Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Inv 57:359–369Google Scholar
  78. Vasan NS (1987) Somite chondrogenesis: the role of the microenvironment. Cell Diff 21:147–159Google Scholar
  79. Viebahn C, Lane EB, Ramaekers CS (1992) Intermediate filament protein expression and mesoderm formation in the rabbit embryo. A double-labelling immunofluorescence study. Roux's Arch Dev Biol 201:45–60Google Scholar
  80. Voitesek B, Staskova Z, Nenutil R, Bartkova J, Kovarik J, Rejthar A, Bartek J (1989) A panel of monoclonal antibodies to keratin no 7: characterization and value in tumor diagnosis. Neoplasma 37:333–342Google Scholar
  81. Walmsley R (1953) The development and growth of the intervertebral disc. Edinburgh Med J 66:341–364Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Werner Götz
    • 1
  • Michael Kasper
    • 2
  • Gösta Fischer
    • 3
  • Rainer Herken
    • 1
  1. 1.Abt. HistologieZentrum Anatomie der Georg-August-Universität GöttingenGöttingenGermany
  2. 2.Institut für PathologieUniversitätsklinikum Carl Gustav Carus der Technischen UniversitätDresdenGermany
  3. 3.Abt. Allgemeine Pathologie und Pathologische Anatomie IIZentrum Pathologie, UniversitätsklinikumGöttingenGermany

Personalised recommendations