Skip to main content
Log in

Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Late Miocene (7.9 to 4.5 Ma) Pocho volcanic field in Argentina occurs 700 km east of the Chile trench over the modern shallowly dipping Andean Wadati-Benioff zone near 32° S latitude in Argentina. The field is located in the Sierra de Cordoba which is the easternmost Laramide-style, block-faulted range in the Sierras Pampeanas (Pampean ranges). The arrival of the shallowly dipping slab initiated both volcanism and the uplift of the Sierra de Cordoba. Pocho rocks (52% to 68% SiO2; FeO*/MgO>2.2) comprise an older (7.5±0.5 Ma) high-K and a younger (5.3±0.7 Ma) shoshonitic series. Mineralogic data and fractionation models show that crystallization occurred under hydrous, oxidizing conditions, which were most extreme in the high-K series. An unusual pattern of successively lower REE at higher SiO2 concentrations can be modeled by sphene, apatite and amphibole removal. An arc-like trace element signature attributed to an arc component is strongest in the younger shoshonitic series. An important depleted lower crustal/mantle lithospheric source component in both series is indicated by non-radiogenic Sr and Pb isotopic ratios at ɛNd= 0 to + 2, low Rb/Sr ratios, and low U and Th concentrations. This depleted signature contrasts with the enriched one in potassic back-arc Central Volcanic Zone (CVZ) lavas over the steeper subduction zone to the north and is attributed to several processes in the shallow subduction zone. First, deep crustal (MASH) processes in the nearly normal thickness crust beneath Pocho incorporated depleted Proterozoic basement components, and not complexly mixed structurally thickened crustal components as in the CVZ. Second, the association of Pocho volcanism with the arrival of the slab allowed little time for modification of the mantle by subduction components. Third, Miocene shallowing of the subduction zone beneath the “flat-slab” required thinning of both the astenosphere and the subcontinental lithosphere. Thus, an important subcrustal component could be from blocks removed from the base of the lithosphere to the west and recycled into the asthenosphere. Similar magmatic sources would have existed during Laramide shallow subduction in western North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbruzzi J, Kay SM, Bickford ME (1993) Implications for the nature of the Precordilleran basement from the geochemistry and age of Precambrian xenoliths in Miocene volcanic rocks, San Juan Province, Argentina. XII Cong Geol Arg Actas Buenos Aires 3:331–339

    Google Scholar 

  • Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks B (1990) Foreland shortening and crustal balancing in the Andes at 30° S latitude. Tectonics 9:789–809

    Google Scholar 

  • Arth J (1976) Behavior of trace elements during magmatic processes — a summary of theoretical models and their applications. US Geol Surv J Res 4:41–47

    Google Scholar 

  • Barreiro BA (1984) Lead isotopes and Andean magmagenesis. In: Harmon RS, Barreiro BA (eds) Andean magmatism — chemical and isotopic constraints. Shiva, Bristol, pp 21–30

    Google Scholar 

  • Brogioni NB (1984) Petrología del vulcanismo Cenozoico de la provincia de San Luis. PhD thesis, Univ Nac de La Plata, La Plata, Argentina

  • Caelles JC (1979) The geological evolution of the Sierras Pampeanas massif, La Rioja and Catamarca Provinces, Argentina. PhD thesis, Queens Univ, Canada

  • Cahill T, Isacks B (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529

    Google Scholar 

  • Coira B, Kay SM (1993) Implications of Quaternary volcanism at Cerro Tuzgle for crustal and mantle evolution of the high Puna Plateau, Central Andes, Argentina. Contrib Mineral Petrol 113:40–58

    Google Scholar 

  • Conra B, Kay SM, Viramonte J (1993) Upper Cenozoic magmatic evolution of the Argentine Puna — a model for changing subduction geometry. Int Geol Rev 35:677–720

    Google Scholar 

  • Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Island: crystallization history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25:88–125

    Google Scholar 

  • Davidson JP, McMillan NJ, Moorbath S, Wörner G, Harmon RS, Lopez-Escobar L (1990) The Nevados de Payachata volcanic region (18° S/69° W. N. Chile). II. Evidence for widespread crustal involvement in Andean magmatism. Contrib Mineral Petrol 105:412–432

    Google Scholar 

  • Deruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south central and meridional Andes. J Volcanol Geotherm Res 14:77–124

    Google Scholar 

  • Deruelle B (1991) Petrology of Quaternary shoshonitic lavas of northwestern Argentina. Geol Soc Am Spec Pap 265:201–216

    Google Scholar 

  • Dudas FO (1991) Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana alkalic province. J Geophys Res 96:13261–13277

    Google Scholar 

  • Ellam RM, Menzies MA, Hawkesworth CJ, Leeman WP, Rosi WP, Serri G (1988) The transition from calc-alkaline to potassic orogenic magmatism in the Aeolian Islands, Southern Italy. Bull Volcanol 50:386–398

    Google Scholar 

  • Emerman S, Turcotte DL (1983) Stagnation flow with a temperature dependent viscosity. J Fluid Mech 127:507–517

    Google Scholar 

  • Gerlach DC, Hart SR, Morales VWJ, Palacios C (1986) Mantle heterogeneity beneath the Nazca plate: San Felix and Juan Fernandez islands. Nature 322:165–169

    Google Scholar 

  • Gordillo CE (1984) Migmatitas cordieríticas de la Sierra de Cordoba: condiciones fisicas de la migmatización. Academia Nacional de Ciencias Misc Pub 68, Cordoba, Argentina

  • Cordillo CE, Linares E (1982) Geocronología y petrografia de las vuleanitas Terciarias del departamento Pocho, provincia de Cordoba. Rev Asoc Geol Argent 36:380–388

    Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminum in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Deruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc London 141:803–822

    Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, Lopez-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41° S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res 91:5963–5983

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Introcaso A, Lion A, Ramos VA (1987) La estructura profunda de las Sierras de Córdoba. Rev Asoc Geol Argent 42:177–187

    Google Scholar 

  • Isacks B (1988) Uplift of the central Andean plateau and bending of the Bolivian Orocline. J Geophys Res 93:3211–3231

    Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764

    Google Scholar 

  • Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80:259–278

    Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–278

    Google Scholar 

  • Kay SM (1991) Miocene “flat-slab” volcanic rocks as guides to lithospheric processes in the central Andes (28–33° S). VI Cong Geol Chileno Viña del Mar 1:579–583

    Google Scholar 

  • Kay SM, Gordillo CE (1990) Pocho volcanic rocks in the Sierra de Cordoba — melting of depleted continental lithosphere above a shallow subduction zone. XI Cong Geol Argentino Actas San Juan 1:60–63

    Google Scholar 

  • Kay SM, Maksaev V, Mpodozis C, Moscoso R, Nasi C (1987) Probing the evolving Andean lithosphere: middle to late Tertiary magmatic rocks in Chile over the modern zone of subhorizontal subduction (29–31.5° S). J Geophys Res 92:6173–6189

    Google Scholar 

  • Kay SM, Maksaev V, Mpodozis C, Moscoso R, Nasi C, Gordillo CE (1988) Tertiary Andean magmatism in Argentina and Chile between 28–33° S: correlation of magmatic chemistry with a changing Benioff zone. J South Am Earth Sci 1:21–38

    Google Scholar 

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source regions for mid-late Tertiary volcanic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28–33° S). Geol Soc Am Spec Pap 265:113–138

    Google Scholar 

  • Kay SM, Abbruzzi J, Allmendinger RA, Jordan T (1993) Isotopic constraints on Miocene to Recent evolution of the central Andean lithosphere over the “flat-slab”. In: Andean Geodynamics, ORSTROM Éditions Collection Colloques et Séminaires, Paris, pp 381–384

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back-arc volcanic rocks as guides to lithospheric delamination beneath the Argentine Puna Plateau, Central Andes. J Geophys Res (in press)

  • Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of lower crust during magmatic underplating. Geochim Cosmochim Acta 56:971–986

    Google Scholar 

  • Knox WJ, Kay SM, Coira B (1989) Geochemical evidence for the origin of Quaternary basaltic andesites of the Puna, northwestern Argentina. Rev Asoc Geol Argent 64:194–206

    Google Scholar 

  • Lipman PW (1971) Iron-titanium oxide phenocrysts in compositionally zoned ash-flow sheets from southern Nevada. J Geol 79:483–456

    Google Scholar 

  • Lipman PW, Prostka HJ, Christiansen RL (1972) Evolving subduction zones in the western United States as interpreted from igneous rocks. Science 174:821–825

    Google Scholar 

  • Llambías EJ, Brogioni N (1981) Magmatismo Mesozoico y Cenozoico. In: Geología de La Provincia de San Luis. VIII Cong Geol Argentino Relatorio, San Luis, pp 101–115

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geotherm Res 23:69–108

    Google Scholar 

  • Meen JK (1987) Formation of shoshonites from calc-alkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Mineral Petrol 97:333–351

    Google Scholar 

  • Meen JK, Eggler DH (1987) Petrology and geochemistry of the Cretaceous Independence volcanic suite, Absaroka Mountains, Montana: clues to the composition of the Archean sub-Montanan mantle. Geol Soc Am Bull 98:238–247

    Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Google Scholar 

  • Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13:97–108

    Google Scholar 

  • Morrison J, Valley JW (1988) Contamination of the Marcy anorthosite massif, Adirondack Mountains, NY: petrologic and isotopic evidence. Contrib Mineral Petrol 98:97–108

    Google Scholar 

  • Norman MD, Mertzman SA (1991) Petrogenesis of Challis volcanics from central and southwestern Idaho: trace element and Pb isotopic evidence. J Geophys Res 96:13279–13293

    Google Scholar 

  • Ramos VA (1988) Late Proterozoic-Early Paleozoic of South America — a collisional history. Episodes 11:168–174

    Google Scholar 

  • Ramos VA, Munizaga F, Kay SM (1991) El magmatismo Cenozoico a los 33° S latitud: Geocronología y relaciones tectónicas. VI Cong Geol Chileno Actas Viña del Mar, 1:892–896

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Kirschbaum A, Baldo EGA (1991) Facies intrusivas de edad carbonífera en el Batolito de Achala: evidencia de una anatexis regional en las Sierras Pampeanas? VI Cong Geol Chileno Actas Viña del Mar 1:40–43

    Google Scholar 

  • Reagan MK, Gill JB (1989) Coexisting calc-alkaline and high niobium basalts from Turrialba Volcano, Costa Rica: implications for residual titanites in arc magma sources. J Geophys Res 94:4619–4633

    Google Scholar 

  • Reynolds JH, Jordan TE, Johnson NM, Damanti JF, Tabbutt KD (1990) Neogene deformation of the flat-subduction segment of the Argentine-Chilean Andes: magnetostratigraphic constraints from Las Juntas, La Rioja Province, Argentina. Geol Soc Am Bull 102:1607–1622

    Google Scholar 

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci 91:271–285

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petrol 90:244–257

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Mattey DP, Harmon RS (1987) Sediment subduction and the source of potassium in orogenic leucitites. Geology 15:451–453

    Google Scholar 

  • Rutherford MJ, Devine J (1988) The May 18, 1990 eruption of Mount St Helens 3. Stability and chemistry of amphibole in the magma chamber. J Geophys Res 93:11949–11959

    Google Scholar 

  • Schreiber U, Schwab K (1991) Geochemistry of Quaternary shoshonitic lavas related to the Calama-Olacapato-El Toro lineament (NW Argentina). J South Am Earth Sci 4:73–86

    Google Scholar 

  • Smalley R, Isacks BL (1990) Seismotectonics of thin- and thick-skinned deformation in the Andean foreland from local network data: evidence for a seismogenic lower crust. J Geophys Res 95:12487–12498

    Google Scholar 

  • Smalley R Jr, Pujol J, Regnier M, Chiu J-M, Chatelain J-L, Isacks BL, Araujo M, Puebla N (1993) Basement seismicity beneath the Andean Precordillera thin-skinned thrust belt and implications for crustal and lithospheric behavior. Tectonics 12:63–76

    Google Scholar 

  • Stern C (1991) Role of subduction erosion in the generation of Andean magmas. Geology 19:78–81

    Google Scholar 

  • Stormer JC, Whitney JA (1985) Two feldspar and iron-titanium oxide equilibria in silicic magmas and the depth of origin of large volume ash-flow tuffs. Am Mineral 70:52–64

    Google Scholar 

  • Taylor HP Jr (1986) Igneous rocks: II. Isotopic case studies of Circum-Pacific magmatism. In: Valley JW, Taylor HP Jr, O'Neil JR (eds) Stable isotopes in high temperature geological processes (Reviews in Mineralogy vol. 16). Mineralogical Society of America, Washington DC, pp 273–316

    Google Scholar 

  • Wörner G, Harmon RS, Davidson J, Moorbath S, Turner DL, McMillan N, Nye C, Lopez-Escobar L, Moreno H (1988) The Nevados de Payachata volcanic region (18° S/68° W, N. Chile). I. Geological, geochemical and isotopic observations. Bull Volcanol 50:287–303

    Google Scholar 

  • Wörner G, Moorbath S, Harmon RS (1992) Andean Cenozoic volcanic centers reflect basement isotopic domains. Geology 20:1103–1106

    Google Scholar 

  • Zindler AH, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, S.M., Gordillo, C.E. Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes. Contrib Mineral Petrol 117, 25–44 (1994). https://doi.org/10.1007/BF00307727

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307727

Keywords

Navigation