Physics and Chemistry of Minerals

, Volume 4, Issue 4, pp 317–339

Systematics of the spinel structure type

  • Roderick J. Hill
  • James R. Craig
  • G. V. Gibbs
Article

Abstract

Systematic trends in the geometry of 149 oxide and 80 sulfide binary and ternary spinels have been examined from the standpoint of ionic radius and electronegativity. The mean ionic radii of the octahedral and tetrahedral cations, taken together, account for 96.9 and 90.5% of the variation in the unit cell parameter, a, of the oxides and sulfides, respectively, with the octahedral cation exerting by far the dominant influence in sulfides. The mean electronegativity of the octahedral cation exerts an additional, but small, influence on the cell edge of the sulfides. The equation a=(8/3√d)dtet+(8/3)doct, where dtet and doct are the tetrahedral and octahedral bond lengths obained from the sum of the ionic radii, accounts for 96.7 and 83.2% of the variation in a in the oxides and sulfides, respectively, again testifying to the applicability of the hard-sphere ionic model in the case of the spinel structure. Comparison of observed and calculated u values for 94 spinels indicates that up to 40% of the experimentally measured anion coordinates may be significantly in error. In addition to these compounds, u values are given for 52 spinels for which no data have previously been determined. Diagrams are presented for the rapid interpretation of the internal consistency of published data and the prediction of the structural parameters of hypothetical or partially studied spinels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215–221 (1961)Google Scholar
  2. Barth, T.F.W., Posnjak, E.: Spinel structures: with and without variate atom equipoints. Z. Krist. 82, 325–341 (1932)Google Scholar
  3. Blasse, G.: Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structures. Philips Res. Rep. Suppl. No. 3 (1964)Google Scholar
  4. Bouchard, R.J., Russo, P.A., Wold, A.: Preparation and electrical properties of some thiospinels. Inorg. Chem. 4, 685–688 (1965)Google Scholar
  5. Bragg, W.H.: The structure of the spinel group of crystals. Philos. Mag. 30, 305–315 (1915)Google Scholar
  6. Dunitz, J.D., Orgel, L.E.: Electronic properties of transition metal oxides. I. Distortions from cubic symmetry. J. Phys. Chem. Solids 3, 20–29 (1957)Google Scholar
  7. Fischer, P.: Neutronbeugungsuntersuchung der Strukturen von MgAl2O4 — und ZnAl2O4 — Spinellen, in Abhängigkeit von der Vorgeschichte. Z. Krist. 124, 275–302 (1967)Google Scholar
  8. Glidewell, C.: Some chemical and structural consequences of non-bonded interactions. Inorg. Chim. Acta 12, 219–227 (1975)Google Scholar
  9. Goodenough, J.B.: Description of transition-metal compounds: application to several sulfides. C.N.R.S. No. 157, 263–292 (1967)Google Scholar
  10. Goodenough, J.B., Loeb, A.L.: Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98, 391–408 (1955)Google Scholar
  11. Gorter, E.W.: Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res. Rep. 9, 295–320 (1954)Google Scholar
  12. Grimes, N.W.: The spinels: versatile materials. Phys. Technol. 1975, 22–27 (1975)Google Scholar
  13. Grimes, N.W., Collett, A.J.: Correlation of infra-red spectra with structural distortions in the spinel series Mg(CrxAl2−x)O4. Phys. Status Solidi (B) 43, 591–599 (1971)Google Scholar
  14. Hafner, S.: Metalloxyde mit Spinellstruktur. Schweiz. Mineral. Petrogr. Mitt. 40, 207–243 (1960)Google Scholar
  15. Kamb, B.: Structural basis of the olivine-spinel stability relation. Am. Mineral. 53, 1439–1455 (1968)Google Scholar
  16. Kugimiya, K., Steinfink, H.: The influence of crystal radii and electronegativities on the crystallization of AB2X4 stoichiometries. Inorg. Chem. 7, 1762–1770 (1968)Google Scholar
  17. Laves, F., Bayer, G., Panagos, A.: Strukturelle Beziehungen zwischen den Typen α-PbO2, FeWO4 (Wolframit) und FeNb2O6 (Columbit), and über die Polymorphie des FeNbO4. Schweiz. Mineral. Petrogr. Mitt. 43, 217–234 (1963)Google Scholar
  18. Lotgering, F.K.: Oxygen and sulphur spinels containing cobalt (MCo2O4) and (MCo2S4). Philips Res. Rep. 11, 337–350 (1956)Google Scholar
  19. Lotgering, F.K., Stapele, R.P., van: Cation-anion distances in chalcogenide spinels. Mater. Res. Bull. 3, 507–512 (1968)Google Scholar
  20. Mikheev, V.I.: A formula for the correlation of the length of the edge of the unit cell of spinels. Dokl. Acad. Sci. USSR 101, 343–346 (1955)Google Scholar
  21. Navrotsky, A., Kleppa, O.J.: The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29, 2701–2714 (1967)Google Scholar
  22. Nishikawa, S.: Structure of some crystals of the spinel group. Proc. Math. Phys. Soc. Tokyo 8, 199–209 (1915)Google Scholar
  23. Pauling, L.: The nature of the chemical bond. 3rd edn. New York: Cornell University Press 1960Google Scholar
  24. Philipsborn, H. von: Crystal growth and characterization of chromium sulfo- and seleno-spinels. J. Cryst. Growth 9, 296–304 (1971)Google Scholar
  25. Raccah, P.M., Bouchard, R.J., Wold, A.: Crystallographic study of chromium spinels. J. Appl. Phys. 37, 1436–1437 (1966)Google Scholar
  26. Reuter, B., Riedel, E., Hug, P., Arndt, D., Geisler, U., Behnke, J.: Zur Kristallchemie der Vanadin (III)-Spinelle. Z. Anorg. Allg. Chemie 369, 306–312 (1969)Google Scholar
  27. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976)Google Scholar
  28. Standley, K.J.: Oxide magnetic materials. 2nd edn. Oxford: Clarendon Press 1972Google Scholar
  29. Suchow, L., Ando, A.A.: Magnetic properties of transition metal-rare-earth chalcogenide spinels. J. Solid State Chem. 2, 156–159 (1970)Google Scholar
  30. Thompson, P., Grimes, N.W.: Madelung calculations for the spinel structure. Philos. Mag. 36, 501–505 (1977)Google Scholar
  31. Vaughan, D.J., Burns, R.G., Burns, V.M.: Geochemistry and bonding of thiospinel minerals. Geochim. Cosmochim. Acta 35, 365–381 (1971)Google Scholar
  32. Vermaas, F.H.S., Schmidt, E.R.: The influence of ionic radii of cations and covalent forces on the unit cell dimensions of spinels. Beitr. Mineral. Petrogr. 6, 219–232 (1959)Google Scholar
  33. Verwey, E.J., Boer, F., van Santen, J.H.: Cation arrangement in spinels. J. Chem. Phys. 16, 1091–1092 (1948)Google Scholar
  34. White, W.B., Keramidas, V.G.: Application of infarared and Raman spectroscopy to the characterization of order-disorder in high temperature oxides. Nat. Bur. Stand. Spec. Publ. 364, 113–126 (1972)Google Scholar
  35. Wyckoff, R.W.G.: Crystal structures. 2nd edn., Vol. 3. New York: Interscience 1965Google Scholar
  36. Yagi, T.F., Marumo, F., Akimoto, S.-I.: Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4. Am. Mineral. 59, 486–490 (1974)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Roderick J. Hill
    • 1
  • James R. Craig
    • 2
  • G. V. Gibbs
    • 2
  1. 1.CSIRO Division of Mineral ChemistryPort MelbourneAustralia
  2. 2.Department of Geological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations