The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states

  • Victor C. Kress
  • Ian S. E. Carmichael
Article

Abstract

Ultrasonic longitudinal acoustic velocities in oxidized silicate liquids indicate that the pressure derivative of the partial-molar volume of Fe2O3 is the same in iron-rich alkali-, alkaline earth- and natural silicate melt compositions at 1 bar. The dV/dP for multicomponent silicate liquids can be expressed as a linear combination of partial-molar constants plus a positive excess term for Na2O−Al2O3 mixing. Partial-molar properties for FeO and Fe2O3 components allow extension of the empirical expression of Sack et al. (1980) to permit the calculation of Fe-redox equilibrium in a natural silicate liquid as a function of composition, temperature, fo2 and pressure; a more formal thermodynamic expression is presented in the Appendix. The predicted equilibrium fo2 of natural silicate melts, of fixed oxygen content, closely parallels that defined by the metastable assemblage fayalite+magnetite+β-quartz (FMQ), in pressure-temperature space. A silicate melt initially equilibrated at 3 GPa and FMQ, will remain within approximately 0.5 log10 units of FMQ during its closed-system ascent. Thus, for magmas closed to oxygen, iron-redox equilibrium in crystal-poor pristine glassy lavas represents an excellent probe of the relative oxidation state of their source regions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baidov VV, Kunin LL (1968) Speed of ultrasound and compressibility of molten silica. Sov Phys — Dokl 13:64–65Google Scholar
  2. Becker GE (1986) Velocity of sound. In: Weast RC, Astle MI, Beyer WH (eds) CRC handbook of chemistry and physics, 66th. edn. CRC Press, Boca Raton, Florida, p E-43Google Scholar
  3. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O−K2O−CaO−MgO−FeO−Fe2O3−Al2O3−SiO2−TiO2−H2O−CO2. J Petrol 29:445–522Google Scholar
  4. Birch F (1966) Compressibility; elastic constants. In: Clark SPJr (ed) Handbook of physical constants-revised edition. Geol Soc Am Mem 97, pp 97–107Google Scholar
  5. Bockris JO'M, Kojonen E (1960) The compressibilities of certain molten silicates and borates. J Am Chem Soc 82:4493–4497CrossRefGoogle Scholar
  6. Bowker JC, Lupis CHP, Flinn PA (1981) Structural studies of slags by Mössbauer spectroscopy. Can Metall Q 20:69–78Google Scholar
  7. Carmichael RS (1984) Handbook of physical properties of rocks Volume III. CRC Press, Boca Raton, FloridaGoogle Scholar
  8. Carmichael ISE, Ghiorso MS (1986) Oxidation-reduction relations in basic magma: a case for homogenious equilibria. Earth Planet Sci Lett 78:200–210CrossRefGoogle Scholar
  9. Dingwell DB, Brearley M (1988) Melt densities in the CaO−FeO−Fe2O3−SiO2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts. Geochim Cosmochim Acta 52:2815–2825Google Scholar
  10. Dingwell DB, Brearley M, Dickinson JEJr (1988) Melt densities in the Na2O−FeO−Fe2O3−SiO2 system and the partial molar volume of tetrahedrally-coordinated ferric iron in silicate melts. Geochim Cosmochim Acta 52:2467–2475Google Scholar
  11. Dyer MD, Naney MT, Swanson SE (1987) Effects of quench methods on Fe3+/Fe2+ ratios: a Mössbauer and wet-chemical study. Am Mineral 72:792–800Google Scholar
  12. Fudali RF (1965) Oxygen fugacities of basaltic and andesitic magmas. Geochim Cosmochim Acta 29:1063–1075CrossRefGoogle Scholar
  13. Greig JW (1927a) Immiscibility in silicate melts: part I. Am J Sci 5:1–44Google Scholar
  14. Greig JW (1927b) Immiscibility in silicate melts: part II. Am J Sci 5:133–154Google Scholar
  15. Holmes RD, O'Neill HStC, Arculus RJ (1986) Standard Gibbs free energy of formation for Cu2O, NiO, CoO, and FexO: high resolution electrochemical measurements using zirconia solid electrolytes from 900–1,400 K. Geochim Cosmochim Acta 50:2439–2452CrossRefGoogle Scholar
  16. Iwamoto N, Tsumawaki Y, Nakagawa H, Yoshimura T, Wakabayashi N (1978) Investigation of calcium-iron-silicate glasses by the Mössbauer method. J of Non-Cryst Solids 29:347–356Google Scholar
  17. Kennedy GC (1948) Equilibrium between volatiles and iron oxides in igneous rocks. Am J Sci 246:529–549Google Scholar
  18. Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferricferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140CrossRefGoogle Scholar
  19. Kress VC (1990) Experiments in Silicate Liquids: Redox State and Sound Speeds. PhD Thesis, University of California, BerkeleyGoogle Scholar
  20. Kress VC, Carmichael ISE (1988) Stoichiometry of the iron oxidation reaction in silicate melts. Am Mineral 73:1267–1274Google Scholar
  21. Kress VC, Carmichael ISE (1989) The lime-iron-silicate melt system: redox and volume systematics. Geochim Cosmochim Acta 53:2883–2892Google Scholar
  22. Kress VC, Williams Q, Carmichael ISE (1988) Ultrasonic investigation of melts in the system Na2O−Al2O3−SiO2. Geochim Cosmochim Acta 52:283–293CrossRefGoogle Scholar
  23. Kress VC, Williams Q, Carmichael ISE (1989) When is a silicate melt not a liquid. Geochim Cosmochim Acta 53:1687–1692Google Scholar
  24. Lange R, Carmichael ISE (1987) Densities of Na2O−K2O−CaO−MgO−FeO−Fe2O3−Al2O3−TiO2−SiO2 liquids: new measurements and derived partial-molar properties. Geochim Cosmochim Acta 51:2931–2946CrossRefGoogle Scholar
  25. Lange RA, Carmichael ISE (1989) Ferric-ferrous equilibria in Na2O−FeO−Fe2O3−SiO2 melts: effects of analytical techniques on derived partial molar volumes. Geochim Cosmochim Acta 53:2195–2204CrossRefGoogle Scholar
  26. Levy RA, Lupis CHP, Flinn PA (1976) Mössbauer analysis of the valence and coordination of iron cations in SiO2−Na2O−CaO glasses. Phys Chem Glasses 17:94–103Google Scholar
  27. Lindsley DH, Speidel DH, Nafziger RH (1968) P-T-fo2 relations for the system Fe−O−SiO2. Am J Sci 226:342–360Google Scholar
  28. Manghnani MH, Sato H, Rai CS (1986) Ultrasonic velocity and attenuation measurements on basalt melts to 1,500° C: role of composition and structure in the viscoelastic properties. J Geophys Res 91:9333–9342Google Scholar
  29. Mo X, Carmichael ISE, Rivers M, Stebbins J (1982) The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas. Mineral Mag 45:237–245Google Scholar
  30. Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592CrossRefGoogle Scholar
  31. Navrotsky A, Geisinger KL, McMillan P, Gibbs GV (1985) The tetrahedral framework in glasses and melts: inference from molecular orbital calculations and implications for structure, thermodynamics and physical properties. Phys Chem Miner 11:284–298CrossRefGoogle Scholar
  32. Notis MR, Spriggs RM, Hahn WCJr (1971) Elastic moduli of pressure-sintered nickel oxide. J Geophys Res 76:7052–7061Google Scholar
  33. O'Horo MP, Levy RA (1978) Effect of melt atmosphere on the magnetic properties of a [(SiO2)45(CaO)55]65[Fe2O3]35 glass. J Appl Phys 49:1635–1637Google Scholar
  34. Pargamin L, Lupis CHP, Flinn PA (1972) Mössbauer analysis of the distribution of iron cations in silicate slags. Metall Trans 3:2093–2105Google Scholar
  35. Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50 mol% SiO2 at 1,500° C. J Chem Phys 44:2857–2865CrossRefGoogle Scholar
  36. Rigden SM, Ahrens TJ, Stolper EM (1984) Density of liquid silicates at high pressures. Science 226:1071–1074Google Scholar
  37. Rigden SM, Ahrens TJ, Stolper EM (1988) Shock compression of molten silicate: results for a model basaltic composition. J Geophys Res 93:367–382Google Scholar
  38. Rigden SM, Ahrens TJ, Stolper EM (1989) High pressure equation of state of molten anorthite and diopside. J Geophys Res 94:9508–9522Google Scholar
  39. Rivers ML, Carmichael ISE (1987) Ultrasonic studies of silicate melts. J Geophys Res 92:9247–9270Google Scholar
  40. Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferricferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376Google Scholar
  41. Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas-forming elements. Geophys Res Lett 5:447–449Google Scholar
  42. Skinner BJ (1966) Thermal expansion. In: Clark SPJr (ed) Handbook of physical constants-revised edition. Geol Soc Am Mem, 97, pp 75–96Google Scholar
  43. Sokolov LN, Baidov VV, Kunin LL, Dymov VV (1971) Surface and volume characteristics of the calcium oxide-alumina-silica system. Sb Tr Tsentr Nauchno-Issled Inst Chem Metall 74:53–61Google Scholar
  44. Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131–148CrossRefGoogle Scholar
  45. Thornber CR, Roeder PL, Foster JR (1980) The effect of composition on the ferric-ferrous ratio in basaltic liquids at atmospheric pressure. Geochim Cosmochim Acta 44:525–532CrossRefGoogle Scholar
  46. Tomlinson JW, Henes MSR, Bockris JO'M (1958) The structure of liquid silicates-part 2: molar volumes and expansivities. Trans Faraday Soc 54:1822–1833CrossRefGoogle Scholar
  47. Whittaker EJW, Muntas R (1970) Ionic radii for use in geochemistry. Geochim Cosmochim Acta 34:945–956CrossRefGoogle Scholar
  48. Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst 85:823–827Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Victor C. Kress
    • 1
    • 2
  • Ian S. E. Carmichael
    • 1
    • 2
  1. 1.Department of Geology and GeophysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Geological SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations