Contributions to Mineralogy and Petrology

, Volume 117, Issue 4, pp 331–344 | Cite as

Systematics of internal zircon morphology in major Variscan granitoid types

  • Gerhard Vavra
Article

Abstract

The internal morphologies of zircon crystals from different types of granitoids (alkaline, calcalkaline and anatectic) are revealed by cathodoluminescence imaging and are described in terms of growth rates of the crystal faces relative to each other. Zircons in the alkaline granitoids are characterized by high and constant growth rates of {010} relative to the pyramidal forms and by symmetric grwoth of {011}. Zircons in the calcalkaline and anatectic granitoids are characterized by fluctuating or gradually decreasing relative growth rates of {010}, by asymmetric and highly variable growth of {011}, and by a tendency of {110} to become grwoth-inhibited. Corrosion events are interspersed during zircon growth in the calcalkaline magmas. In the calcalkaline and anatectic magmas, a discontinuity breaks the morphological evolution at late stages of crystallization. The discontinuity coincides with a sharp drop in cathodoluminescence. The growth behaviour of each crystal form is analysed and compared with predictions made by the periodic bond chain (PBC) theory. It is argued that the relative growth rate of {010} depends on supersaturation, that the growth rates of {011} faces are changed in response to different ratios of adsorbing cations (Na, K, Al), and that {110} faces become growth-inhibited by the adsorption of H2O or trace elements enriched in the residual liquid. Morphological and chemical discontinuities at late stages of crystallization are reasonably explained by the formation of larger growth units (from smaller ionic entities) in the residual liquid. Important factors controlling the zircon morphology in different types of granitoids are: high cooling rates (alkaline magmas), magma mixing (calcalkaline magmas), enrichment of H2O and trace elements in residual liquids (calcalkaline and anatectic magmas), and the major element chemistry of the magma, possibly the ratio of Na and K to Al (agpaicity).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth S, Oberli F, Meier M, Blattner P, Bargossi M, di Battistini G (1993) The evolution of a calc-alkaline basic to silicic magma system: geochemical and Rb−Sr, Sm−Nd, and 18O/16O isotopic evidence from the Late Hercynian Atesina-Cima d'Asta volcano-plutonic complex, northern Italy. Geochim Cosmochim Acta 57:4285–4300Google Scholar
  2. Barth S, Oberli F, Meier M (1994) Geochronology in the southern Alps (N Italy): allanite Th−Pb dating of rhyolite and granodiorite from the Late Hercynian Atesina-Cima d'Asta volcanoplutonic complex. Earth Planet Sci Let (in press)Google Scholar
  3. Benisek A, Finger F (1993) Which factors control the prism tracht of granite zircons. Contrib Mineral Petrol 114:441–451Google Scholar
  4. Bonin B (1977) Les complexes granitiques subvolcaniques de Corse: caractéristiques, signification et origine. Bull Soc Géol Fr 7:865–871Google Scholar
  5. Bonin B (1988) Peralkaline granites in Corsica: some petrological and geochemical constraints. Rend Soc Ital Mineral Petrol 43:281–306Google Scholar
  6. Bonin B, Grelou-Orsini C, Vialette Y (1978) Age, origin and evolution of the anorogenic complex of Evisa (Corsica): a K−Li−Rb−Sr study. Contrib Mineral Petrol 65:425–432Google Scholar
  7. Bonin B, Platevoet B, Vialette Y (1987) The geodynamic significance of alkaline magmatism in the western Mediterranean compared with West Africa. Geol J 22:361–387Google Scholar
  8. Bruneton P, Orsini JB (1977) Le massif granitique de Budduso (Sardaigne nord-orientale): une seule intrusion de type zone concentrique. C R Acad Sci Sér D 284:151–154Google Scholar
  9. Caruba R (1978) Morphologie de zircons synthétiques corrélations pétrogénétiques. Can Mineral 16:315–323Google Scholar
  10. Caruba R, Baumer A, Hartman P (1988) Crystal growth of synthetic zircon round natural seeds. J Crys Growth 88:297–302Google Scholar
  11. Cliff RA (1981) Pre-Alpine history of the Pennine zone in the Tauern window, Austria: U−Pb and Rb−Sr geochronology. Contrib Mineral Petrol 77:262–266Google Scholar
  12. Cocirta C, Orsini JB, Coulon C (1989) Exemples de mélange de magmas en contexte plutonique: les enclaves des tonalitesgranodiorites du massif de Bono (Sardaigne septentrionale). Can J Earth Sci 26:1264–1281Google Scholar
  13. d'Amico C, Franceschini C (1985) An example of H2O-undersaturated granitic magma: a case study of partially-melted aplite xenoliths in granite porphyries from the Cima d'Asta intrusive complex, southern Alps, Italy. Mineral Petrogr Acta 29:139–144Google Scholar
  14. Finger F, Steyrer HP (1988) Granite-types in the Hohe Tauern (Eastern Alps, Austria) — some aspects on their correlation to Variscan plate tectonic processes. Geodinamica Acta 2:75–87Google Scholar
  15. Finger F, Frasl G, Haunschmid B, Lettner H, von Quadt A, Schermaier A, Schindlmaier AO, Steyrer HP (1993) The Zentralgneise of the Tauern Window (Eastern Alps) — insight into an intra-Alpine Variscan batholith. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 375–391Google Scholar
  16. Frisch W, Vavra G, Winkler M (1993) Evolution of the Penninic basement of the Eastern Alps. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 349–360Google Scholar
  17. Hartman P (1987) Modern PBC theory. In: Sunagawa I (ed) Morphology of crystals. Terra Scientific, Tokyo, pp 269–319Google Scholar
  18. Holub B, Marschallinger R (1989) Die Zentralgneise im Hochalm-Ankogel-Massiv (östliches Tauernfenster). Teil I: petrographische Gliederung und Intrusionsfolge. Mitt Österr Geol Ges 81:5–31Google Scholar
  19. Karner FR, Helgesen JO (1970) Petrologic significance of zircon variation in the Tunk Lake Granite, southeastern Maine. J Geology 78:480–498Google Scholar
  20. Köhler H (1970) Die Änderung der Zirkonmorphologie mit dem Differentiationsgrad eines Granits. N Jahrb Mineral Monatsh (9)405–420Google Scholar
  21. Paterson BA, Stephens WE, Rogers G, Williams IS, Hinton RW, Herd DA (1992) The nature of zircon inheritance in 2 granite plutons. Trans R Soc Edinburgh: Earth Sci 83:459–471Google Scholar
  22. Poldervaart A (1956) Zircon in rocks:2. Igneous rocks. Am J Sci 254:521–554Google Scholar
  23. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220Google Scholar
  24. Pupin JP, Turco G (1972) Une typologie originale du zircon accessoire. Bull Soc Fr Minéral Cristallogr 95:348–359Google Scholar
  25. Pupin JP, Turco G (1975) Typologie du zircon accessoire dans les roches plutoniques dioritiques, granitiques et syentiques. Facteurs essentiels déterminant les variations typologiques. Pétrologie 1:139–156Google Scholar
  26. Pupin JP, Turco G (1981) Le zircon, minéral commun significatif des roches endogènes et exogènes. Bull Minéral 104:724–731Google Scholar
  27. Shelley D (1993) Igneous and metamorphic rocks under the microscope. Chapman and Hall, LondonGoogle Scholar
  28. Sommerauer J (1974) Trace element distribution patterns and the mineralogical stability of zircon — an application for combined electron microprobe techniques. Proc Electron Microscopy Society of Southern Africa 4:71–72Google Scholar
  29. Speer JA (1982) Zircon. In: Ribbe PH (ed) Orthosilicates, 2nd edn (Reviews in Mineralogy, vol 5). Mineralogical Society of America, Washington DC, pp 67–112Google Scholar
  30. Sunagawa I (1984) Growth of crystals in nature. In: Sunagawa I (ed) Materials science of the Earth's interior. Terra Scientific, Tokyo, pp 63–105Google Scholar
  31. Sunagawa I (1987) Morphology of minerals. In: Sunagawa I (ed) Morphology of crystals. Terra Scientific, Tokyo, pp 511–587Google Scholar
  32. Vavra G (1989) Die Entwicklung des penninischen Grundgebirges im östlichen und zentralen Tauernfenster der Ostalpen — Geochemie, Zirkonmorphologie, U/Pb-Radiometrie. Tübinger Geowiss Abh Reihe A 6, pp 150Google Scholar
  33. Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contrib Mineral Petrol 106:90–99Google Scholar
  34. Vavra G (1993) A guide to quantitative morphology of accessory zircon. In: Watson EB, Harrison TM, Miller CF, Ryerson FJ (ed) Geochemistry of accessory minerals. Chem Geol 110: 15–28Google Scholar
  35. Vavra G and Hansen BT (1991) Cathodoluminescence studies and U/Pb dating of zircons in pre-Mesozoic gneisses of the Tauern Window — implications for the Penninic basement evolution. Geol Rundsch 80:703–715Google Scholar
  36. Veniale F, Pigorini B, Soggetti F (1968) Petrological significance of accessory zircon in the granites from Baveno, M. Orfano and Alzo (North Italy). Proc 23rd Int Geol Congr 13:243–268Google Scholar
  37. Woensdregt CF (1992) Computation of surface energies in an electrostatic point charge model: II. Application to zircon. Phys Chem Mineral 19:59–69Google Scholar
  38. Zorpi MJ, Coulon C, Orsini JB, Cocirta C (1989) Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics 157:315–329Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Gerhard Vavra
    • 1
  1. 1.Eidgenössische Technische Hochschule ZürichInstitut für Kristallographie und PetrographieZürichSwitzerland

Personalised recommendations