Anatomy and Embryology

, Volume 166, Issue 3, pp 333–353 | Cite as

A quantitative approach to cytoarchitectonics

VIII. The areal pattern of the cortex of the albino mouse
  • Andreas Wree
  • Karl Zilles
  • Axel Schleicher


The cerebral cortex of the albino mouse was examined by means of a quantitative method. An image analyzer was used in conjunction with an automatic scanning procedure to determine the grey level index in Nissl-stained sections. Computer plots of various ranges of grey level indices enabled delineation of cortical areas, from which cortical maps were graphically reconstructed.

The cortical areal pattern is, in some regions, similar to the commonly used map of Caviness (1975) but differes considerably in other regions, especially in the temporal one. Furthermore, the primary visual cortex of the mouse was shown to be composed of two distinct cytoarchitectonic areas.

The results of the study are discussed with respect to the literature on anatomical and functional localizations in the mouse cerebral cortex.

Key words

Cytoarchitectonics Albino mouse Iso-and allocortex Cortical mapping Automatic measuring method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams AD, Forrester JM (1968) The projection of the rat's visual field on the cerebral cortex. Quart J Exp Physiol 53:327–336Google Scholar
  2. Caviness VS (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247–263Google Scholar
  3. Caviness VS, Frost DO (1980) Tangential organization of thalamic projections to the neocortex in the mouse. J Comp Neurol 194:335–367Google Scholar
  4. De Vries I (1912) Über die Zytoarchitektonik der Großhirnrinde der Maus und über die Beziehung der einzelnen Zellschichten zum Corpus callosum auf Grund von experimentellen Läsionen. Folia Neuro-Biol 6:289–322Google Scholar
  5. Döllken D (1907) Beiträge zur Entwicklung des Säugergehirns. Lage und Ausdehnung des Bewegungscentrums der Maus. Neurol Centralbl 26:50–59Google Scholar
  6. Donoghue JP, Kerman KL, Ebner FF (1979) Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. J Comp Neurol 183:647–664Google Scholar
  7. Dräger UC (1974) Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res 82:284–292Google Scholar
  8. Dräger UC (1975) Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol 160:269–290Google Scholar
  9. Droogleever Fortuyn AB (1911) De cytoarchitectonie der groote-hersenschors van eenige knaagdieren. Scheltema en Holkema, AmsterdamGoogle Scholar
  10. Droogleever Fortuyn AB (1914) Cortical cell-lamination of the hemispheres of some rodents. Arch Neurol Psychiat (Mott's, London) 6:221–354Google Scholar
  11. Fleischhauer K, Zilles K, Schleicher A (1980) A revised cytoarchitectonic map of the neocortex of the rabbit (Oryctolagus cuniculus). Anat Embryol 161:121–143Google Scholar
  12. Guldin WO, Pritzel M, Markowitsch HJ (1981) Prefrontal cortex of the mouse defined as cortical projection area of the thalamic mediodorsal nucleus. Brain Beh Evol 19:93–107Google Scholar
  13. Hall RD, Lindholm EP (1974) Organisation of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38Google Scholar
  14. Haug FMS (1976) Sulphide silver pattern and cytoarchitectonics of parahippocampal areas in the rat. Adv Anat Embryol Cell Biol 52(4):1–73Google Scholar
  15. Isenschmid R (1911) Zur Kenntnis der Großhirnrinde der Maus. Abh Königl Preuss Akad Wiss, Phys-math Kl, Abh 3:1–46Google Scholar
  16. Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192Google Scholar
  17. Krieg WJS (1946) Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas. J Comp Neurol 84:221–275Google Scholar
  18. Ribak CE, Peters A (1975) An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Res 92:341–368Google Scholar
  19. Romeis B (1968) Mikroskopische Technik. 16 Aufl. Oldenbourg MünchenGoogle Scholar
  20. Rose M (1912) Histologische Lokalisation der Großhirnrinde bei kleinen Säugetieren (Rodentia, Insektivora, Chiroptera). J Psychol Neurol 19:391–479Google Scholar
  21. Rose M (1929) Cytoarchitektonischer Atlas der Großhirnrinde der Maus. J Psychol Neurol 40:1–51Google Scholar
  22. Schleicher A, Zilles K, Kretschmann HJ (1978) Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Anat Anz (Erg-H) 144:413–415Google Scholar
  23. Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen. 4 Bd, Teil 9, Nervensystem. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  24. Tsuneda N (1937) Zur Cytoarchitektonik des Neocortex des Mäusegehirns. Okajimas Folia Anat Jpn 15:1–47Google Scholar
  25. Valverde F, Estéban ME (1968) Peristriate cortex of mouse: location and effects of enucleation on the number of dendritic spines. Brain Res 9:145–148Google Scholar
  26. Volkmann Rv (1926) Vergleichende Untersuchungen an der Rinde der “motorischen” und “Sehregion” von Nagetieren. Anat Anz (Erg H) 61:234–243Google Scholar
  27. Volkmann Rv (1928) Vergleichende Cytoarchitektonik der Regio occipitalis kleiner Nager und ihre Beziehung zur Sehleistung. Z Anat Entwickl-Gesch 85:561–657Google Scholar
  28. Wagor E, Mangini NJ, Pearlman AL (1980) Retinotopic organisation of striate and extrastriate cortex in the mouse. J Comp Neurol 193:187–202Google Scholar
  29. Woolsey TA (1967) Somatosensory, auditory and visual cortical areas of the mouse. Johns Hopkins Med J 121:91–112Google Scholar
  30. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242Google Scholar
  31. Wree A, Zilles K, Schleicher A (1981) A quantitative approach to cytoarchitectonics. VII. The areal pattern of the cortex of the guinea pig. Anat Embryol 162:81–103Google Scholar
  32. Wree A, Schleicher A, Zilles K (1982) Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosc Meth 6:29–43Google Scholar
  33. Zilles K, Schleicher A (1980) Similarities and differences in the cortical areal pattern of Galago demidovii (E. Geoffroy 1796), (Lorisidae, Primates) and Microcebus murinus (E. Geoffroy 1828), (Lemuridae, Primates). Folia Primatol 33:161–171Google Scholar
  34. Zilles K, Schleicher A, Kretschmann HJ (1978a) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of Tupaia belangeri. Anat Embryol 153:195–212Google Scholar
  35. Zilles K, Schleicher A, Kretschmann HJ (1978b) A quantitative approach to cytoarchitectonics. II. The allocortex of Tupaia belangeri. Anat Embryol 154:335–352Google Scholar
  36. Zilles K, Schleicher A, Kretschmann HJ (1978c) Quantitative Darstellung cytoarchitektonischer Areale im Cortex von Tupaia belangeri und SPF-Katze. Anat Anz (Erg H) 144:409–411Google Scholar
  37. Zilles K, Schleicher A, Kretschmann HJ (1978d) Automatische Messung des Grauwertindex zur Charakterisierung zytoarchitektonischer Areale im Allo-und Neocortex. Zbl Allg Path 122:593Google Scholar
  38. Zilles K, Rehkämper G, Schleicher A (1979a) A quantitative approach to cytoarchitectonics. V. The areal pattern of the cortex of Microcebus murinus (E. Geoffroy 1828), (Lemuridae, Primates). Anat Embryol 157:269–289Google Scholar
  39. Zilles K, Rehkämper G, Stephan H, Schleicher A (1979b) A quantitative approach to cytoarchitectonics. IV. The areal pattern of the cortex of Galago demidovii (E. Geoffroy 1796), (Lorisidae, Primates). Anat Embryol 157:81–103Google Scholar
  40. Zilles K, Zilles B, Schleicher A (1980) A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol 159:335–360Google Scholar
  41. Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate brain evolution: Methods and Concepts, Plenum Publishing Corporation, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1983

Authors and Affiliations

  • Andreas Wree
    • 1
  • Karl Zilles
    • 1
  • Axel Schleicher
    • 1
  1. 1.Anatomisches Institut der Universität KölnBundesrepublik Deutschland

Personalised recommendations